cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372591 Numbers whose binary weight (A000120) plus bigomega (A001222) is even.

This page as a plain text file.
%I A372591 #6 May 15 2024 16:28:46
%S A372591 2,6,7,8,9,10,11,13,15,19,24,28,31,32,33,34,36,37,39,40,41,42,44,46,
%T A372591 47,50,51,52,54,57,58,59,60,61,65,67,70,73,76,77,79,85,86,90,95,96,97,
%U A372591 98,103,106,107,109,110,111,112,117,119,123,124,126,127,128,129
%N A372591 Numbers whose binary weight (A000120) plus bigomega (A001222) is even.
%C A372591 The odd version is A372590.
%e A372591 The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
%e A372591           {2}   2  (1)
%e A372591         {2,3}   6  (2,1)
%e A372591       {1,2,3}   7  (4)
%e A372591           {4}   8  (1,1,1)
%e A372591         {1,4}   9  (2,2)
%e A372591         {2,4}  10  (3,1)
%e A372591       {1,2,4}  11  (5)
%e A372591       {1,3,4}  13  (6)
%e A372591     {1,2,3,4}  15  (3,2)
%e A372591       {1,2,5}  19  (8)
%e A372591         {4,5}  24  (2,1,1,1)
%e A372591       {3,4,5}  28  (4,1,1)
%e A372591   {1,2,3,4,5}  31  (11)
%e A372591           {6}  32  (1,1,1,1,1)
%e A372591         {1,6}  33  (5,2)
%e A372591         {2,6}  34  (7,1)
%e A372591         {3,6}  36  (2,2,1,1)
%e A372591       {1,3,6}  37  (12)
%e A372591     {1,2,3,6}  39  (6,2)
%e A372591         {4,6}  40  (3,1,1,1)
%e A372591       {1,4,6}  41  (13)
%e A372591       {2,4,6}  42  (4,2,1)
%t A372591 Select[Range[100],EvenQ[DigitCount[#,2,1]+PrimeOmega[#]]&]
%Y A372591 For sum (A372428, zeros A372427) we have A372587, complement A372586.
%Y A372591 For minimum (A372437) we have A372440, complement A372439.
%Y A372591 Positions of even terms in A372441, zeros A071814.
%Y A372591 For maximum (A372442, zeros A372436) we have A372589, complement A372588.
%Y A372591 The complement is A372590.
%Y A372591 For just binary indices:
%Y A372591 - length: A001969, complement A000069
%Y A372591 - sum: A158704, complement A158705
%Y A372591 - minimum:  A036554, complement A003159
%Y A372591 - maximum: A053754, complement A053738
%Y A372591 For just prime indices:
%Y A372591 - length: A026424 A028260 (count A027187), complement (count A027193)
%Y A372591 - sum: A300061 (count A058696), complement A300063 (count A058695)
%Y A372591 - minimum: A340933 (count A026805), complement A340932 (count A026804)
%Y A372591 - maximum: A244990 (count A027187), complement A244991 (count A027193)
%Y A372591 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372591 A029837 gives greatest binary index, least A001511.
%Y A372591 A031215 lists even-indexed primes, odd A031368.
%Y A372591 A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
%Y A372591 A070939 gives length of binary expansion.
%Y A372591 A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
%Y A372591 Cf. A000720, A006141, A066207, A257991, A300272, A304818, A340604, A341446, A372429-A372433, A372438.
%K A372591 nonn
%O A372591 1,1
%A A372591 _Gus Wiseman_, May 14 2024