This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372591 #6 May 15 2024 16:28:46 %S A372591 2,6,7,8,9,10,11,13,15,19,24,28,31,32,33,34,36,37,39,40,41,42,44,46, %T A372591 47,50,51,52,54,57,58,59,60,61,65,67,70,73,76,77,79,85,86,90,95,96,97, %U A372591 98,103,106,107,109,110,111,112,117,119,123,124,126,127,128,129 %N A372591 Numbers whose binary weight (A000120) plus bigomega (A001222) is even. %C A372591 The odd version is A372590. %e A372591 The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin: %e A372591 {2} 2 (1) %e A372591 {2,3} 6 (2,1) %e A372591 {1,2,3} 7 (4) %e A372591 {4} 8 (1,1,1) %e A372591 {1,4} 9 (2,2) %e A372591 {2,4} 10 (3,1) %e A372591 {1,2,4} 11 (5) %e A372591 {1,3,4} 13 (6) %e A372591 {1,2,3,4} 15 (3,2) %e A372591 {1,2,5} 19 (8) %e A372591 {4,5} 24 (2,1,1,1) %e A372591 {3,4,5} 28 (4,1,1) %e A372591 {1,2,3,4,5} 31 (11) %e A372591 {6} 32 (1,1,1,1,1) %e A372591 {1,6} 33 (5,2) %e A372591 {2,6} 34 (7,1) %e A372591 {3,6} 36 (2,2,1,1) %e A372591 {1,3,6} 37 (12) %e A372591 {1,2,3,6} 39 (6,2) %e A372591 {4,6} 40 (3,1,1,1) %e A372591 {1,4,6} 41 (13) %e A372591 {2,4,6} 42 (4,2,1) %t A372591 Select[Range[100],EvenQ[DigitCount[#,2,1]+PrimeOmega[#]]&] %Y A372591 For sum (A372428, zeros A372427) we have A372587, complement A372586. %Y A372591 For minimum (A372437) we have A372440, complement A372439. %Y A372591 Positions of even terms in A372441, zeros A071814. %Y A372591 For maximum (A372442, zeros A372436) we have A372589, complement A372588. %Y A372591 The complement is A372590. %Y A372591 For just binary indices: %Y A372591 - length: A001969, complement A000069 %Y A372591 - sum: A158704, complement A158705 %Y A372591 - minimum: A036554, complement A003159 %Y A372591 - maximum: A053754, complement A053738 %Y A372591 For just prime indices: %Y A372591 - length: A026424 A028260 (count A027187), complement (count A027193) %Y A372591 - sum: A300061 (count A058696), complement A300063 (count A058695) %Y A372591 - minimum: A340933 (count A026805), complement A340932 (count A026804) %Y A372591 - maximum: A244990 (count A027187), complement A244991 (count A027193) %Y A372591 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372591 A029837 gives greatest binary index, least A001511. %Y A372591 A031215 lists even-indexed primes, odd A031368. %Y A372591 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A372591 A070939 gives length of binary expansion. %Y A372591 A112798 lists prime indices, length A001222, reverse A296150, sum A056239. %Y A372591 Cf. A000720, A006141, A066207, A257991, A300272, A304818, A340604, A341446, A372429-A372433, A372438. %K A372591 nonn %O A372591 1,1 %A A372591 _Gus Wiseman_, May 14 2024