cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372601 The maximal exponent in the prime factorization of the largest exponentially odd divisor of n.

This page as a plain text file.
%I A372601 #11 May 08 2024 08:53:06
%S A372601 0,1,1,1,1,1,1,3,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,5,1,1,
%T A372601 1,1,1,1,1,3,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,5,1,1,1,1,
%U A372601 1,1,1,3,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1
%N A372601 The maximal exponent in the prime factorization of the largest exponentially odd divisor of n.
%C A372601 First differs from A331273 at n = 64.
%C A372601 Differs from A363332 at n = 1, 216, 432, 648, 864, 1000, ... .
%H A372601 Amiram Eldar, <a href="/A372601/b372601.txt">Table of n, a(n) for n = 1..10000</a>
%F A372601 a(n) = A051903(A350390(n)).
%F A372601 a(n) = A109613(A051903(n)-1) for n >= 2.
%F A372601 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum_{i>=1} (1 - (1/zeta(2*i+1))) = 1.42929441950714075659... .
%t A372601 f[n_] := n - If[EvenQ[n], 1, 0]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
%o A372601 (PARI) s(n) = (n+1) \ 2 * 2 - 1;
%o A372601 a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);
%Y A372601 Cf. A051903, A109613, A350390, A368711.
%Y A372601 Cf. A331273, A363332.
%Y A372601 Similar sequences: A007424, A368781, A372602, A372603, A372604.
%K A372601 nonn,easy
%O A372601 1,8
%A A372601 _Amiram Eldar_, May 07 2024