cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A372602 The maximal exponent in the prime factorization of the largest square dividing n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Crossrefs

Similar sequences: A007424, A368781, A372601, A372603, A372604.

Programs

  • Mathematica
    f[n_] := 2 * Floor[n/2]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = n \ 2 * 2;
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A008833(n)).
a(n) = A052928(A051903(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * Sum_{i>=1} (1 - (1/zeta(2*i))) = 0.98112786070359477197... .

A372603 The maximal exponent in the prime factorization of the powerful part of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Comments

First differs from A275812 at n = 36, and from A212172 at n = 37.

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 0, n]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = if(n == 1, 0, n);
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A057521(n)).
a(n) = A087156(A051903(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - 1/zeta(2) + Sum_{i>=2} (1 - 1/zeta(i)) = A033150 - A059956 = 1.09728403825134113562... .

A372604 The maximal exponent in the prime factorization of the largest divisor of n whose number of divisors is a power of 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Comments

First differs from A331273 at n = 32.
Differs from A368247 at n = 1, 128, 216, 256, 384, 432, 512, ... .
All the terms are of the form 2^k-1 (A000225).

Examples

			4 has 3 divisors, 1, 2 and 4. The number of divisors of 4 is 3, which is not a power of 2. The number of divisors of 2 is 2, which is a power of 2. Therefore, A372379(4) = 2 and a(4) = A051903(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := 2^Floor[Log2[n + 1]] - 1; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = 2^exponent(n+1) - 1;
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A372379(n)).
a(n) = A092323(A051903(n)+1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{i>=1} 2^i * (1 - 1/zeta(2^(i+1)-1)) = 1.36955053734097783559... .

A375360 The maximum exponent in the prime factorization of the smallest exponentially odd number that is divisible by n.

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 3, 3, 3, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 13 2024

Keywords

Comments

Differs from A365331 at n = 1, 36, 72, 100, ... .

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[(If[OddQ[#], #, # + 1]) & /@ e]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = if(n == 1, 0, vecmax(apply(x -> if(x % 2, x, x+1), factor(n)[,2])));

Formula

a(n) = A051903(A356191(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum{k>=1} (1 - 1/zeta(2*k)) = 1.98112786070359477197... .
Showing 1-4 of 4 results.