A372604 The maximal exponent in the prime factorization of the largest divisor of n whose number of divisors is a power of 2.
0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
4 has 3 divisors, 1, 2 and 4. The number of divisors of 4 is 3, which is not a power of 2. The number of divisors of 2 is 2, which is a power of 2. Therefore, A372379(4) = 2 and a(4) = A051903(2) = 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_] := 2^Floor[Log2[n + 1]] - 1; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
-
PARI
s(n) = 2^exponent(n+1) - 1; a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);
Comments