A372629 Prime numbers whose sum of digits is a palindrome.
2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 41, 43, 47, 53, 61, 71, 83, 101, 103, 107, 113, 131, 137, 151, 173, 191, 211, 223, 227, 233, 241, 251, 263, 281, 311, 313, 317, 331, 353, 401, 421, 431, 443, 461, 499, 503, 521, 601, 641, 701, 769, 787, 821, 859, 877, 911, 967, 1013, 1019, 1021, 1031, 1033, 1051
Offset: 1
Examples
2411 is a term (prime, and digits sum to 8, a palindrome); 9931 is a term (prime, and digits sum to 22, a palindrome); 10099997 is a term (prime, and digits sum to 44).
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000 (terms 1..999 from James S. DeArmon)
- James S. DeArmon, Common LISP code for A372629
Programs
-
Mathematica
Select[Prime[Range[200]], PalindromeQ[DigitSum[#]] &] (* Paolo Xausa, Feb 27 2025 *)
-
Python
import sympy def sum_of_digits(n): return sum(int(digit) for digit in str(n)) def is_palindrome(n): return str(n) == str(n)[::-1] # Find prime numbers between 1 and 10000 whose sum of digits is a palindrome prime_palindrome_numbers = [] for num in range(1,10000): if sympy.isprime(num): digit_sum = sum_of_digits(num) if is_palindrome(digit_sum): prime_palindrome_numbers.append(num) print(prime_palindrome_numbers) (Common Lisp) ; See Links section.