cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372629 Prime numbers whose sum of digits is a palindrome.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 41, 43, 47, 53, 61, 71, 83, 101, 103, 107, 113, 131, 137, 151, 173, 191, 211, 223, 227, 233, 241, 251, 263, 281, 311, 313, 317, 331, 353, 401, 421, 431, 443, 461, 499, 503, 521, 601, 641, 701, 769, 787, 821, 859, 877, 911, 967, 1013, 1019, 1021, 1031, 1033, 1051
Offset: 1

Views

Author

James S. DeArmon, May 07 2024

Keywords

Examples

			2411 is a term (prime, and digits sum to 8, a palindrome);
9931 is a term (prime, and digits sum to 22, a palindrome);
10099997 is a term (prime, and digits sum to 44).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]], PalindromeQ[DigitSum[#]] &] (* Paolo Xausa, Feb 27 2025 *)
  • Python
    import sympy
    def sum_of_digits(n):
        return sum(int(digit) for digit in str(n))
    def is_palindrome(n):
        return str(n) == str(n)[::-1]
    # Find prime numbers between 1 and 10000 whose sum of digits is a palindrome
    prime_palindrome_numbers = []
    for num in range(1,10000):
        if sympy.isprime(num):
            digit_sum = sum_of_digits(num)
            if is_palindrome(digit_sum):
                prime_palindrome_numbers.append(num)
    print(prime_palindrome_numbers)
    (Common Lisp) ; See Links section.