This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372659 #9 May 12 2024 11:25:05 %S A372659 0,2,1,3,20,4,15,12,5,7,13,8,29,6,10,21,16,36,9,19,63,11,18,17,28,33, %T A372659 14,26,59,22,54,56,57,101,23,34,25,27,96,46,53,88,24,44,51,42,211,38, %U A372659 49,93,92,180,47,91,207,30,37,64,50,62,43,60,80,31,41,85,76 %N A372659 Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the Fibonacci numbers that appear in the Zeckendorf representation of n do not appear in the dual Zeckendorf representation of a(n). %C A372659 The dual Zeckendorf representation is also known as the lazy Fibonacci representation (see A356771 for further details). %C A372659 This sequence is a permutation of the nonnegative integers with inverse A372660. %H A372659 Rémy Sigrist, <a href="/A372659/b372659.txt">Table of n, a(n) for n = 0..10000</a> %H A372659 Rémy Sigrist, <a href="/A372659/a372659.gp.txt">PARI program</a> %H A372659 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %H A372659 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A372659 The first terms, alongside the Zeckendorf representation of n and the dual Zeckendorf representation of a(n), in binary, are: %e A372659 n a(n) z(n) d(a(n)) %e A372659 -- ---- ------ -------- %e A372659 0 0 0 0 %e A372659 1 2 1 10 %e A372659 2 1 10 1 %e A372659 3 3 100 10 %e A372659 4 20 101 101010 %e A372659 5 4 1000 101 %e A372659 6 15 1001 110110 %e A372659 7 12 1010 10101 %e A372659 8 5 10000 111 %e A372659 9 7 10001 1110 %e A372659 10 13 10010 101101 %e A372659 11 8 10100 1011 %e A372659 12 29 10101 10101010 %o A372659 (PARI) \\ See Links section. %Y A372659 See A372657 for a similar sequence. %Y A372659 Cf. A356771, A372660 (inverse). %K A372659 nonn,base %O A372659 0,2 %A A372659 _Rémy Sigrist_, May 09 2024