A372666 Numbers of the form A002110(k)/prime(i); i = 2..k-1; sorted.
10, 42, 70, 330, 462, 770, 2730, 4290, 6006, 10010, 39270, 46410, 72930, 102102, 170170, 570570, 746130, 881790, 1385670, 1939938, 3233230, 11741730, 13123110, 17160990, 20281170, 31870410, 44618574, 74364290, 281291010, 340510170, 380570190, 497668710, 588153930
Offset: 1
Keywords
Examples
Since k > 2, we start with A002110(3) = 2*3*5 = 30 and 3 is the only prime divisor of 30 which fits the definition so 30/3 = 10 is a(1). A002110(6) = 2*3*5*7*11*13 = 30030 contributes four terms to the sequence, namely 30030/11 = 2730, 30030/7 = 4290, 30030/5 = 6006, and 30030/3 = 10010.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10153
Programs
-
Mathematica
Flatten@ Table[P = Product[Prime[i], {i, n}]; Array[P/Prime[n - #] &, n - 2], {n, 3, 10}] (* Michael De Vlieger, May 10 2024 *)
Extensions
More terms from Michael De Vlieger, May 10 2024
Comments