This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372680 #13 May 10 2024 11:12:00 %S A372680 124,192,322,808,830,957,1757,4067,5489,6616,6724,6794,7065,7727,7728, %T A372680 7736,8253,8938,9438,9989,10194,10195,10271,10350,10389,10397,10445, %U A372680 10475,10611,10835,11107,11500,11606,11758,11835,12089,12304,12398,12501,12548,12645,12694,12695,12734,12820 %N A372680 Integers k such that 2^k contains all powers of 2 not exceeding k as substrings. %C A372680 It is unknown whether this sequence contains infinitely many terms. %e A372680 124 is a term; 2^124 = 21267647932558653966460912964485513216 contains 2, 4, 8, 16, 32, 64 as substrings. %o A372680 (Python) %o A372680 def f(m): %o A372680 a = str(2**m) %o A372680 for i in range(0, m.bit_length()): %o A372680 if str(2**i) not in a: %o A372680 return 0 %o A372680 return 1 %o A372680 def a(n): %o A372680 m = 0 %o A372680 i = 0 %o A372680 while i != n: %o A372680 m += 1 %o A372680 i += f(m) %o A372680 return m %Y A372680 Cf. A046300, A094776, A371808. %K A372680 nonn,base %O A372680 1,1 %A A372680 _Bryle Morga_, May 10 2024