This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372683 #19 Aug 26 2024 02:10:26 %S A372683 1,2,5,10,17,33,65,129,257,514,1027,2049,4097,8193,16385,32770,65537, %T A372683 131073,262145,524289,1048577,2097154,4194305,8388609,16777217, %U A372683 33554433,67108865,134217730,268435457,536870913,1073741826,2147483649,4294967297,8589934594 %N A372683 Least squarefree number >= 2^n. %F A372683 a(n) = A005117(A372540(n)). %F A372683 a(n) = A067535(2^n). - _R. J. Mathar_, May 31 2024 %e A372683 The terms together with their binary expansions and binary indices begin: %e A372683 1: 1 ~ {1} %e A372683 2: 10 ~ {2} %e A372683 5: 101 ~ {1,3} %e A372683 10: 1010 ~ {2,4} %e A372683 17: 10001 ~ {1,5} %e A372683 33: 100001 ~ {1,6} %e A372683 65: 1000001 ~ {1,7} %e A372683 129: 10000001 ~ {1,8} %e A372683 257: 100000001 ~ {1,9} %e A372683 514: 1000000010 ~ {2,10} %e A372683 1027: 10000000011 ~ {1,2,11} %e A372683 2049: 100000000001 ~ {1,12} %e A372683 4097: 1000000000001 ~ {1,13} %e A372683 8193: 10000000000001 ~ {1,14} %e A372683 16385: 100000000000001 ~ {1,15} %e A372683 32770: 1000000000000010 ~ {2,16} %e A372683 65537: 10000000000000001 ~ {1,17} %e A372683 131073: 100000000000000001 ~ {1,18} %e A372683 262145: 1000000000000000001 ~ {1,19} %e A372683 524289: 10000000000000000001 ~ {1,20} %t A372683 Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&],{n,0,10}] %o A372683 (PARI) a(n) = my(k=2^n); while (!issquarefree(k), k++); k; \\ _Michel Marcus_, May 29 2024 %o A372683 (Python) %o A372683 from itertools import count %o A372683 from sympy import factorint %o A372683 def A372683(n): return next(i for i in count(1<<n) if max(factorint(i).values(),default=1)==1) # _Chai Wah Wu_, Aug 26 2024 %Y A372683 For primes instead of powers of two we have A112926, opposite A112925, sum A373197, length A373198. %Y A372683 Counting zeros instead of all bits gives A372473, firsts of A372472. %Y A372683 These are squarefree numbers at indices A372540, firsts of A372475. %Y A372683 Counting ones instead of all bits gives A372541, firsts of A372433. %Y A372683 The opposite (greatest squarefree number <= 2^n) is A372889. %Y A372683 The difference from 2^n is A373125. %Y A372683 For prime instead of squarefree we have: %Y A372683 - bits A372684, firsts of A035100 %Y A372683 - zeros A372474, firsts of A035103 %Y A372683 - ones A372517, firsts of A014499 %Y A372683 A000120 counts ones in binary expansion (binary weight), zeros A080791. %Y A372683 A005117 lists squarefree numbers. %Y A372683 A030190 gives binary expansion, reversed A030308, length A070939 or A029837. %Y A372683 A061398 counts squarefree numbers between primes (exclusive). %Y A372683 A077643 counts squarefree terms between powers of 2, run-lengths of A372475. %Y A372683 A143658 counts squarefree numbers up to 2^n. %Y A372683 Cf. A029931, A048793, A049095, A049096, A059015, A069010, A076259, A077641, A211997, A230877. %K A372683 nonn %O A372683 0,2 %A A372683 _Gus Wiseman_, May 26 2024