This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372684 #15 Jun 05 2024 08:53:05 %S A372684 1,3,5,7,12,19,32,55,98,173,310,565,1029,1901,3513,6543,12252,23001, %T A372684 43391,82026,155612,295948,564164,1077872,2063690,3957810,7603554, %U A372684 14630844,28192751,54400029,105097566,203280222,393615807,762939112,1480206280,2874398516,5586502349 %N A372684 Least k such that prime(k) >= 2^n. %F A372684 a(n>1) = A007053(n) + 1. %F A372684 a(n) = A000720(A104080(n)). %F A372684 prime(a(n)) = A104080(n). %F A372684 prime(a(n)) - 2^n = A092131(n). %e A372684 The numbers prime(a(n)) together with their binary expansions and binary indices begin: %e A372684 2: 10 ~ {2} %e A372684 5: 101 ~ {1,3} %e A372684 11: 1011 ~ {1,2,4} %e A372684 17: 10001 ~ {1,5} %e A372684 37: 100101 ~ {1,3,6} %e A372684 67: 1000011 ~ {1,2,7} %e A372684 131: 10000011 ~ {1,2,8} %e A372684 257: 100000001 ~ {1,9} %e A372684 521: 1000001001 ~ {1,4,10} %e A372684 1031: 10000000111 ~ {1,2,3,11} %e A372684 2053: 100000000101 ~ {1,3,12} %e A372684 4099: 1000000000011 ~ {1,2,13} %e A372684 8209: 10000000010001 ~ {1,5,14} %e A372684 16411: 100000000011011 ~ {1,2,4,5,15} %e A372684 32771: 1000000000000011 ~ {1,2,16} %e A372684 65537: 10000000000000001 ~ {1,17} %e A372684 131101: 100000000000011101 ~ {1,3,4,5,18} %e A372684 262147: 1000000000000000011 ~ {1,2,19} %e A372684 524309: 10000000000000010101 ~ {1,3,5,20} %e A372684 1048583: 100000000000000000111 ~ {1,2,3,21} %e A372684 2097169: 1000000000000000010001 ~ {1,5,22} %e A372684 4194319: 10000000000000000001111 ~ {1,2,3,4,23} %e A372684 8388617: 100000000000000000001001 ~ {1,4,24} %t A372684 Table[PrimePi[If[n==1,2,NextPrime[2^n]]],{n,30}] %o A372684 (PARI) a(n) = primepi(nextprime(2^n)); \\ _Michel Marcus_, May 31 2024 %Y A372684 The opposite (greatest k such that prime(k) <= 2^n) is A007053. %Y A372684 Positions of first appearances in A035100. %Y A372684 The distance from prime(a(n)) to 2^n is A092131. %Y A372684 Counting zeros instead of all bits gives A372474, firsts of A035103. %Y A372684 Counting ones instead of all bits gives A372517, firsts of A014499. %Y A372684 For primes between powers of 2: %Y A372684 - sum A293697 %Y A372684 - length A036378 %Y A372684 - min A104080 or A014210 %Y A372684 - max A014234, delta A013603 %Y A372684 For squarefree numbers between powers of 2: %Y A372684 - sum A373123 %Y A372684 - length A077643, run-lengths of A372475 %Y A372684 - min A372683, delta A373125, indices A372540 %Y A372684 - max A372889, delta A373126, indices A143658 %Y A372684 For squarefree numbers between primes: %Y A372684 - sum A373197 %Y A372684 - length A373198 = A061398 - 1 %Y A372684 - min A000040 %Y A372684 - max A112925, opposite A112926 %Y A372684 Cf. A000120, A029837, A029931, A030190, A049095, A069010, A070939, A077641, A080791, A211997. %K A372684 nonn %O A372684 1,2 %A A372684 _Gus Wiseman_, May 30 2024 %E A372684 More terms from _Michel Marcus_, May 31 2024