cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372686 Sorted list of positions of first appearances in A014499 (number of ones in binary expansion of each prime).

This page as a plain text file.
%I A372686 #11 May 15 2024 06:57:40
%S A372686 1,2,4,9,11,31,64,76,167,309,502,801,1028,6363,7281,12079,12251,43237,
%T A372686 43390,146605,291640,951351,1046198,2063216,3957778,11134645,14198321,
%U A372686 28186247,54387475,105097565,249939829,393248783,751545789,1391572698,2182112798,8242984130
%N A372686 Sorted list of positions of first appearances in A014499 (number of ones in binary expansion of each prime).
%C A372686 The unsorted version is A372517.
%H A372686 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hamming_weight">Hamming weight</a>.
%F A372686 prime(a(n)) = A372685(n).
%e A372686 The sequence contains 9 because the first 9 terms of A014499 are 1, 2, 2, 3, 3, 3, 2, 3, 4, and the last of these is the first position of 4.
%t A372686 First/@GatherBy[Range[1000],DigitCount[Prime[#],2,1]&]
%Y A372686 Positions of first appearances in A014499.
%Y A372686 The unsorted version is A372517.
%Y A372686 For binary length we have A372684, primes A104080, firsts of A035100.
%Y A372686 Taking primes gives A372685, unsorted version A061712.
%Y A372686 A000120 counts ones in binary expansion (binary weight), zeros A080791.
%Y A372686 A029837 gives greatest binary index, least A001511.
%Y A372686 A030190 gives binary expansion, reversed A030308.
%Y A372686 A035103 counts zeros in binary expansion of each prime, firsts A372474.
%Y A372686 A048793 lists binary indices, reverse A272020, sum A029931.
%Y A372686 A070939 gives length of binary expansion (number of bits).
%Y A372686 A372471 lists binary indices of primes.
%Y A372686 Cf. A000040, A005940, A059015, A066195, A069010, A071814, A211997, A372429, A372433, A372473, A372516.
%K A372686 nonn,base
%O A372686 1,2
%A A372686 _Gus Wiseman_, May 14 2024
%E A372686 a(26)-a(36) from _Pontus von Brömssen_, May 15 2024