This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372687 #9 May 17 2024 19:49:17 %S A372687 0,0,1,1,1,0,2,1,2,0,3,3,1,4,1,6,5,8,4,12,8,12,7,20,8,16,17,27,19,38, %T A372687 19,46,33,38,49,65,47,67,83,92,94,113,103,130,146,127,215,224,176,234, %U A372687 306,270,357,383,339,393,537,540,597,683,576,798,1026,830,1157 %N A372687 Number of prime numbers whose binary indices sum to n. Number of strict integer partitions y of n such that Sum_i 2^(y_i-1) is prime. %C A372687 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372687 Note the inverse of A048793 (binary indices) takes a set s to Sum_i 2^(s_i-1). %e A372687 The a(2) = 1 through a(17) = 8 prime numbers: %e A372687 2 3 5 . 17 11 19 . 257 131 73 137 97 521 4099 1031 %e A372687 7 13 67 41 71 263 2053 523 %e A372687 37 23 43 139 1033 269 %e A372687 29 83 193 163 %e A372687 53 47 149 %e A372687 31 101 %e A372687 89 %e A372687 79 %e A372687 The a(2) = 1 through a(11) = 3 strict partitions: %e A372687 (2) (2,1) (3,1) . (5,1) (4,2,1) (4,3,1) . (9,1) (6,4,1) %e A372687 (3,2,1) (5,2,1) (6,3,1) (8,2,1) %e A372687 (7,2,1) (5,3,2,1) %t A372687 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&PrimeQ[Total[2^#]/2]&]],{n,0,30}] %Y A372687 For all positive integers (not just prime) we get A000009. %Y A372687 Number of prime numbers p with A029931(p) = n. %Y A372687 For odd instead of prime we have A096765, even A025147, non-strict A087787 %Y A372687 Number of times n appears in A372429. %Y A372687 Number of rows of A372471 with sum n. %Y A372687 The non-strict version is A372688 (or A372887), ranks A277319 (or A372850). %Y A372687 These (strict) partitions have Heinz numbers A372851. %Y A372687 A014499 lists binary indices of prime numbers. %Y A372687 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372687 A038499 counts partitions of prime length, strict A085756. %Y A372687 A048793 lists binary indices: %Y A372687 - length A000120 %Y A372687 - min A001511 %Y A372687 - sum A029931 %Y A372687 - max A070939 %Y A372687 - reverse A272020 %Y A372687 A058698 counts partitions of prime numbers, strict A064688. %Y A372687 A096111 gives product of binary indices. %Y A372687 A372689 lists numbers whose binary indices sum to a prime. %Y A372687 A372885 lists primes whose binary indices sum to a prime, indices A372886. %Y A372687 Cf. A000040, A005940, A023506, A029837, A035100, A071814, A230877, A231204, A359359, A372436, A372441. %K A372687 nonn %O A372687 0,7 %A A372687 _Gus Wiseman_, May 15 2024