cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372687 Number of prime numbers whose binary indices sum to n. Number of strict integer partitions y of n such that Sum_i 2^(y_i-1) is prime.

This page as a plain text file.
%I A372687 #9 May 17 2024 19:49:17
%S A372687 0,0,1,1,1,0,2,1,2,0,3,3,1,4,1,6,5,8,4,12,8,12,7,20,8,16,17,27,19,38,
%T A372687 19,46,33,38,49,65,47,67,83,92,94,113,103,130,146,127,215,224,176,234,
%U A372687 306,270,357,383,339,393,537,540,597,683,576,798,1026,830,1157
%N A372687 Number of prime numbers whose binary indices sum to n. Number of strict integer partitions y of n such that Sum_i 2^(y_i-1) is prime.
%C A372687 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A372687 Note the inverse of A048793 (binary indices) takes a set s to Sum_i 2^(s_i-1).
%e A372687 The a(2) = 1 through a(17) = 8 prime numbers:
%e A372687   2  3  5  .  17  11  19  .  257  131  73  137  97  521  4099  1031
%e A372687               7       13     67   41       71       263  2053  523
%e A372687                              37   23       43       139  1033  269
%e A372687                                            29       83   193   163
%e A372687                                                     53   47    149
%e A372687                                                     31         101
%e A372687                                                                89
%e A372687                                                                79
%e A372687 The a(2) = 1 through a(11) = 3 strict partitions:
%e A372687   (2)  (2,1)  (3,1)  .  (5,1)    (4,2,1)  (4,3,1)  .  (9,1)    (6,4,1)
%e A372687                         (3,2,1)           (5,2,1)     (6,3,1)  (8,2,1)
%e A372687                                                       (7,2,1)  (5,3,2,1)
%t A372687 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&PrimeQ[Total[2^#]/2]&]],{n,0,30}]
%Y A372687 For all positive integers (not just prime) we get A000009.
%Y A372687 Number of prime numbers p with A029931(p) = n.
%Y A372687 For odd instead of prime we have A096765, even A025147, non-strict A087787
%Y A372687 Number of times n appears in A372429.
%Y A372687 Number of rows of A372471 with sum n.
%Y A372687 The non-strict version is A372688 (or A372887), ranks A277319 (or A372850).
%Y A372687 These (strict) partitions have Heinz numbers A372851.
%Y A372687 A014499 lists binary indices of prime numbers.
%Y A372687 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372687 A038499 counts partitions of prime length, strict A085756.
%Y A372687 A048793 lists binary indices:
%Y A372687 - length A000120
%Y A372687 - min A001511
%Y A372687 - sum A029931
%Y A372687 - max A070939
%Y A372687 - reverse A272020
%Y A372687 A058698 counts partitions of prime numbers, strict A064688.
%Y A372687 A096111 gives product of binary indices.
%Y A372687 A372689 lists numbers whose binary indices sum to a prime.
%Y A372687 A372885 lists primes whose binary indices sum to a prime, indices A372886.
%Y A372687 Cf. A000040, A005940, A023506, A029837, A035100, A071814, A230877, A231204, A359359, A372436, A372441.
%K A372687 nonn
%O A372687 0,7
%A A372687 _Gus Wiseman_, May 15 2024