This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372688 #6 May 17 2024 19:47:26 %S A372688 0,0,2,2,1,3,3,6,3,6,9,20,13,22,22,45,47,70,75,100,107,132,157,202, %T A372688 229,302,396,495,536,699,820,962,1193,1507,1699,2064,2455,2945,3408, %U A372688 4026,4691,5749,6670,7614,9127,10930,12329,14370,16955,19961,22950,26574,30941 %N A372688 Number of integer partitions y of n whose rank Sum_i 2^(y_i-1) is prime. %C A372688 Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices). %e A372688 The partition (3,2,1) has rank 2^(3-1) + 2^(2-1) + 2^(1-1) = 7, which is prime, so (3,2,1) is counted under a(6). %e A372688 The a(2) = 2 through a(10) = 9 partitions: %e A372688 (2) (21) (31) (221) (51) (421) (431) (441) (91) %e A372688 (11) (111) (2111) (321) (2221) (521) (3321) (631) %e A372688 (11111) (3111) (4111) (5111) (4221) (721) %e A372688 (22111) (33111) (3331) %e A372688 (211111) (42111) (7111) %e A372688 (1111111) (411111) (32221) %e A372688 (322111) %e A372688 (3211111) %e A372688 (31111111) %t A372688 Table[Length[Select[IntegerPartitions[n], PrimeQ[Total[2^#]/2]&]],{n,0,30}] %Y A372688 For all positive integers (not just prime) we get A000041. %Y A372688 For even instead of prime we have A087787, strict A025147, odd A096765. %Y A372688 These partitions have Heinz numbers A277319. %Y A372688 The strict case is A372687, ranks A372851. %Y A372688 The version counting only distinct parts is A372887, ranks A372850. %Y A372688 A014499 lists binary indices of prime numbers. %Y A372688 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372688 A048793 and A272020 (reverse) list binary indices: %Y A372688 - length A000120 %Y A372688 - min A001511 %Y A372688 - sum A029931 %Y A372688 - max A070939 %Y A372688 A058698 counts partitions of prime numbers, strict A064688. %Y A372688 A372885 lists primes whose binary indices sum to a prime, indices A372886. %Y A372688 Cf. A000040, A005940, A023506, A029837, A035100, A038499, A096111, A372429, A372441, A372471, A372689. %K A372688 nonn %O A372688 0,3 %A A372688 _Gus Wiseman_, May 16 2024