cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372689 Positive integers whose binary indices (positions of ones in reversed binary expansion) sum to a prime number.

This page as a plain text file.
%I A372689 #6 May 19 2024 19:45:40
%S A372689 2,3,4,6,9,11,12,16,18,23,26,29,33,38,41,43,44,48,50,55,58,61,64,69,
%T A372689 71,72,74,79,81,86,89,91,92,96,101,103,104,106,111,113,118,121,131,
%U A372689 132,134,137,142,144,149,151,152,154,159,163,164,166,169,174,176,181
%N A372689 Positive integers whose binary indices (positions of ones in reversed binary expansion) sum to a prime number.
%C A372689 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A372689 Note the function taking a set s to its binary rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).
%e A372689 The terms together with their binary expansions and binary indices begin:
%e A372689    2:      10 ~ {2}
%e A372689    3:      11 ~ {1,2}
%e A372689    4:     100 ~ {3}
%e A372689    6:     110 ~ {2,3}
%e A372689    9:    1001 ~ {1,4}
%e A372689   11:    1011 ~ {1,2,4}
%e A372689   12:    1100 ~ {3,4}
%e A372689   16:   10000 ~ {5}
%e A372689   18:   10010 ~ {2,5}
%e A372689   23:   10111 ~ {1,2,3,5}
%e A372689   26:   11010 ~ {2,4,5}
%e A372689   29:   11101 ~ {1,3,4,5}
%e A372689   33:  100001 ~ {1,6}
%e A372689   38:  100110 ~ {2,3,6}
%e A372689   41:  101001 ~ {1,4,6}
%e A372689   43:  101011 ~ {1,2,4,6}
%e A372689   44:  101100 ~ {3,4,6}
%e A372689   48:  110000 ~ {5,6}
%e A372689   50:  110010 ~ {2,5,6}
%e A372689   55:  110111 ~ {1,2,3,5,6}
%e A372689   58:  111010 ~ {2,4,5,6}
%e A372689   61:  111101 ~ {1,3,4,5,6}
%t A372689 Select[Range[100],PrimeQ[Total[First /@ Position[Reverse[IntegerDigits[#,2]],1]]]&]
%Y A372689 Numbers k such that A029931(k) is prime.
%Y A372689 Union of prime-indexed rows of A118462.
%Y A372689 For even instead of prime we have A158704, odd A158705.
%Y A372689 For prime indices instead of binary indices we have A316091.
%Y A372689 The prime case is A372885, indices A372886.
%Y A372689 A000040 lists the prime numbers, A014499 their binary indices.
%Y A372689 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372689 A058698 counts partitions of prime numbers, strict A064688.
%Y A372689 A372471 lists binary indices of primes, row-sums A372429.
%Y A372689 A372687 counts strict partitions of prime binary rank, counted by A372851.
%Y A372689 A372689 lists numbers whose binary indices sum to a prime.
%Y A372689 A372885 lists primes whose binary indices sum to a prime, indices A372886.
%Y A372689 Binary indices:
%Y A372689 - listed A048793, sum A029931
%Y A372689 - reversed A272020
%Y A372689 - opposite A371572, sum A230877
%Y A372689 - length A000120, complement A023416
%Y A372689 - min A001511, opposite A000012
%Y A372689 - max A070939, opposite A070940
%Y A372689 - complement A368494, sum A359400
%Y A372689 - opposite complement A371571, sum A359359
%Y A372689 Cf. A035100, A071814, A096111, A023506, A277319, A372688, A372850, A372887.
%K A372689 nonn,base
%O A372689 1,1
%A A372689 _Gus Wiseman_, May 18 2024