This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372689 #6 May 19 2024 19:45:40 %S A372689 2,3,4,6,9,11,12,16,18,23,26,29,33,38,41,43,44,48,50,55,58,61,64,69, %T A372689 71,72,74,79,81,86,89,91,92,96,101,103,104,106,111,113,118,121,131, %U A372689 132,134,137,142,144,149,151,152,154,159,163,164,166,169,174,176,181 %N A372689 Positive integers whose binary indices (positions of ones in reversed binary expansion) sum to a prime number. %C A372689 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372689 Note the function taking a set s to its binary rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices). %e A372689 The terms together with their binary expansions and binary indices begin: %e A372689 2: 10 ~ {2} %e A372689 3: 11 ~ {1,2} %e A372689 4: 100 ~ {3} %e A372689 6: 110 ~ {2,3} %e A372689 9: 1001 ~ {1,4} %e A372689 11: 1011 ~ {1,2,4} %e A372689 12: 1100 ~ {3,4} %e A372689 16: 10000 ~ {5} %e A372689 18: 10010 ~ {2,5} %e A372689 23: 10111 ~ {1,2,3,5} %e A372689 26: 11010 ~ {2,4,5} %e A372689 29: 11101 ~ {1,3,4,5} %e A372689 33: 100001 ~ {1,6} %e A372689 38: 100110 ~ {2,3,6} %e A372689 41: 101001 ~ {1,4,6} %e A372689 43: 101011 ~ {1,2,4,6} %e A372689 44: 101100 ~ {3,4,6} %e A372689 48: 110000 ~ {5,6} %e A372689 50: 110010 ~ {2,5,6} %e A372689 55: 110111 ~ {1,2,3,5,6} %e A372689 58: 111010 ~ {2,4,5,6} %e A372689 61: 111101 ~ {1,3,4,5,6} %t A372689 Select[Range[100],PrimeQ[Total[First /@ Position[Reverse[IntegerDigits[#,2]],1]]]&] %Y A372689 Numbers k such that A029931(k) is prime. %Y A372689 Union of prime-indexed rows of A118462. %Y A372689 For even instead of prime we have A158704, odd A158705. %Y A372689 For prime indices instead of binary indices we have A316091. %Y A372689 The prime case is A372885, indices A372886. %Y A372689 A000040 lists the prime numbers, A014499 their binary indices. %Y A372689 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372689 A058698 counts partitions of prime numbers, strict A064688. %Y A372689 A372471 lists binary indices of primes, row-sums A372429. %Y A372689 A372687 counts strict partitions of prime binary rank, counted by A372851. %Y A372689 A372689 lists numbers whose binary indices sum to a prime. %Y A372689 A372885 lists primes whose binary indices sum to a prime, indices A372886. %Y A372689 Binary indices: %Y A372689 - listed A048793, sum A029931 %Y A372689 - reversed A272020 %Y A372689 - opposite A371572, sum A230877 %Y A372689 - length A000120, complement A023416 %Y A372689 - min A001511, opposite A000012 %Y A372689 - max A070939, opposite A070940 %Y A372689 - complement A368494, sum A359400 %Y A372689 - opposite complement A371571, sum A359359 %Y A372689 Cf. A035100, A071814, A096111, A023506, A277319, A372688, A372850, A372887. %K A372689 nonn,base %O A372689 1,1 %A A372689 _Gus Wiseman_, May 18 2024