A372691 Numbers k such that k and k+1 are both nonsquarefree numbers whose number of divisors is a power of 2 (A175496).
135, 296, 343, 375, 999, 1160, 1431, 1592, 1624, 2295, 2375, 2456, 2727, 2943, 3429, 3591, 3624, 3752, 3992, 4023, 4184, 4887, 4913, 5048, 5144, 5319, 5480, 6183, 6344, 6375, 6858, 7479, 7624, 7640, 7749, 7911, 8072, 8375, 8936, 9207, 9368, 9624, 9855, 10071, 10232
Offset: 1
Examples
135 is a term since 135 = 3^3 * 5 and 136 = 2^3 * 17 are both nonsquarefree numbers, and the number of divisors of 135 and 136 are both 8 = 2^3. 343 is a term since 343 = 7^3 and 344 = 2^3 * 43 are both nonsquarefree numbers, the number of divisors of 343 is 4 = 2^2, and the number of divisors of 344 is 8 = 2^3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
pow2Q[n_] := n == 2^IntegerExponent[n, 2]; q[n_] := q[n] = Module[{e = FactorInteger[n][[;;, 2]]}, Max[e] > 1 && pow2Q[Times @@ (e+1)]]; Select[Range[500], q[#] && q[# + 1] &]
-
PARI
is(n) = {my(f = factor(n), d = numdiv(f)); n > 1 && vecmax(f[, 2]) > 1 && d >> valuation(d, 2) == 1;} lista(kmax) = {my(is1 = is(1), is2); for(k = 2, kmax, is2 = is(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2);}
Comments