This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372695 #20 Sep 13 2024 08:04:04 %S A372695 216,432,648,864,1000,1296,1728,1944,2000,2592,2744,3375,3456,3888, %T A372695 4000,5000,5184,5488,5832,6912,7776,8000,9261,10000,10125,10368,10648, %U A372695 10976,11664,13824,15552,16000,16875,17496,17576,19208,20000,20736,21296,21952,23328,25000 %N A372695 Cubefull numbers that are not prime powers. %C A372695 Numbers k such that rad(k)^3 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 2. %C A372695 Proper subset of the following sequences: A001694, A036966, A126706, A286708. %C A372695 Superset of A372841. %C A372695 Smallest term k with omega(k) = m is k = A002110(m)^3 = A115964(m). %H A372695 Michael De Vlieger, <a href="/A372695/b372695.txt">Table of n, a(n) for n = 1..10000</a> %F A372695 Intersection of A036966 and A024619. %F A372695 Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) - Sum_{p prime} 1/(p^2*(p-1)) - 1 = A065483 - A152441 - 1 = 0.0188749045... . - _Amiram Eldar_, May 17 2024 %e A372695 Table of smallest 12 terms and instances of omega(a(n)) = m for m = 2..4 %e A372695 n a(n) %e A372695 ------------------------ %e A372695 1 216 = 2^3 * 3^3 %e A372695 2 432 = 2^4 * 3^3 %e A372695 3 648 = 2^3 * 3^4 %e A372695 4 864 = 2^5 * 3^3 %e A372695 5 1000 = 2^3 * 5^3 %e A372695 6 1296 = 2^4 * 3^4 %e A372695 7 1728 = 2^6 * 3^3 %e A372695 8 1944 = 2^3 * 3^5 %e A372695 9 2000 = 2^4 * 5^3 %e A372695 10 2592 = 2^5 * 3^4 %e A372695 11 2744 = 2^3 * 7^3 %e A372695 12 3375 = 3^3 * 5^3 %e A372695 ... %e A372695 43 27000 = 2^3 * 3^3 * 5^3 %e A372695 ... %e A372695 587 9261000 = 2^3 * 3^3 * 5^3 * 7^3 %t A372695 nn = 25000; Rest@ Select[Union@ Flatten@ Table[a^5 * b^4 * c^3, {c, Surd[nn, 3]}, {b, Surd[nn/(c^3), 4]}, {a, Surd[nn/(b^4 * c^3), 5]}], Not@*PrimePowerQ] %o A372695 (Python) %o A372695 from math import gcd %o A372695 from sympy import primepi, integer_nthroot, factorint %o A372695 def A372695(n): %o A372695 def f(x): %o A372695 c = n+1+x+sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length())) %o A372695 for w in range(1,integer_nthroot(x,5)[0]+1): %o A372695 if all(d<=1 for d in factorint(w).values()): %o A372695 for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1): %o A372695 if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()): %o A372695 c -= integer_nthroot(z//y**4,3)[0] %o A372695 return c %o A372695 def bisection(f,kmin=0,kmax=1): %o A372695 while f(kmax) > kmax: kmax <<= 1 %o A372695 while kmax-kmin > 1: %o A372695 kmid = kmax+kmin>>1 %o A372695 if f(kmid) <= kmid: %o A372695 kmax = kmid %o A372695 else: %o A372695 kmin = kmid %o A372695 return kmax %o A372695 return bisection(f,n,n) # _Chai Wah Wu_, Sep 12 2024 %Y A372695 Cf. A001694, A007947, A024619, A036966, A115964, A126706, A286708, A372841. %Y A372695 Cf. A065483, A152441. %K A372695 nonn %O A372695 1,1 %A A372695 _Michael De Vlieger_, May 14 2024