This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372697 #32 Jul 30 2024 15:25:12 %S A372697 1,2,4,5,7,8,17,26,11,12,20,37,36,67,68,205,14,15,46,63,74,90,127,302, %T A372697 73,145,146,373,307,736,1101,2126,23,22,47,76,75,121,122,364,78,176, %U A372697 177,510,343,842,1229,2607,180,275,276,826,553,1387,1388,4088,827,1878 %N A372697 Index k such that A280866(k) = A019565(n) or 0 if A019565(n) does not appear in A280866. %C A372697 Offset matches A019565. %C A372697 Conjecture: there are no zeros in this sequence, which is equivalent to the conjecture that A280866 is a permutation of natural numbers. %H A372697 Michael De Vlieger, <a href="/A372697/a372697.png">Fan style binary tree showing a(n)</a>, n = 0..2047, with a color code associated with log(a(n))/log(2) for a(n) <= 4194304. Terms that are either 0 or greater than 4194304 appear blank. %e A372697 Let s = A019565 and let t = A280866. %e A372697 a(0) = 1 since s(0) = 1 = t(1). %e A372697 a(1) = 2 since s(1) = 2 = t(2). %e A372697 a(2) = 4 since s(2) = 3 = t(4). %e A372697 a(3) = 5 since s(3) = 5 = t(5). %e A372697 Table relating this sequence to s and t. The last column shows Y if s(n) is divisible by the prime in the heading, otherwise ".": %e A372697 n s(n) a(n) 2357 %e A372697 ---------------------- %e A372697 0 1 1 . %e A372697 1 2 2 Y %e A372697 2 3 4 .Y %e A372697 3 6 5 YY %e A372697 4 5 7 ..Y %e A372697 5 10 8 Y.Y %e A372697 6 15 17 .YY %e A372697 7 30 26 YYY %e A372697 8 7 11 ...Y %e A372697 9 14 12 Y..Y %e A372697 10 21 20 .Y.Y %e A372697 11 42 37 YY.Y %e A372697 12 35 36 .YYY %e A372697 13 70 67 Y.YY %e A372697 14 105 68 .YYY %e A372697 15 210 205 YYYY %e A372697 ... %t A372697 nn = 2^14; c[_] := False; m[_] := 1; %t A372697 i = 1; j = m[1] = m[2] = 2; c[1] = c[2] = True; %t A372697 f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]]; %t A372697 s = Association[ %t A372697 Monitor[Reap[ %t A372697 Do[While[c[Set[k, # m[#]]], m[#]++] &[f[i * j]/f[i]]; %t A372697 If[SquareFreeQ[k], %t A372697 Sow[Total[2^(-1 + PrimePi[FactorInteger[k][[All, 1]]])] -> n] ]; %t A372697 Set[{c[k], i, j}, {True, j, k}], {n, 3, nn}] ][[-1, 1]], n]]; %t A372697 TakeWhile[{1, 2}~Join~Array[If[KeyExistsQ[s, #], Lookup[s, #], 0] &, Floor@ Sqrt[nn], 2], # > 0 &] %Y A372697 Cf. A005117, A019565, A280866, A372514. %K A372697 nonn %O A372697 0,2 %A A372697 _Michael De Vlieger_, Jul 29 2024