A372699 a(1) = 1, j = a(n-1). For n > 1, a(n) is the least novel m such that rad(m*j) is the smallest primorial number divisible by A007947(j).
1, 2, 3, 4, 6, 5, 12, 10, 9, 8, 18, 15, 16, 24, 20, 27, 32, 36, 25, 30, 7, 60, 14, 45, 40, 48, 50, 54, 75, 64, 72, 80, 81, 96, 90, 21, 70, 42, 35, 84, 100, 108, 120, 28, 105, 56, 135, 128, 144, 125, 150, 49, 180, 63, 140, 126, 160, 162, 200, 192, 225, 216, 240
Offset: 1
Keywords
Examples
a(1) = 1 = A002110(0) so a(2) = 2 since rad(2*1) = 2 = A002110(1). a(2) = 2 = A002110(1) so a(3) = 3 since then rad(3*2) = 6 = A002110(2). a(6) = 5 is not primorial so a(7) = 12, since rad(12*5) = 30 = A002110(3) and no smaller novel number has this property.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..10800.
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..10800, showing primes in red, perfect powers of primes in gold, squarefree composites in green, and numbers neither squarefree nor prime powers in blue and purple, with purple indicating powerful numbers that are not prime powers. Primorials P(k) = A002110(k) and primes are labeled.
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^18, with a color function indicating greatest prime factor p = gpf(a(n)), with red indicating p = 2, orange p = 3, ..., magenta p = 29, and pink p = 31.
Programs
-
Mathematica
nn = 120; c[] := False; m[] := 1; Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2]; j = a[2]; f[x_] := f[x] = FactorInteger[x][[All, 1]]; Do[(If[Divisible[j, Set[q, Times @@ Prime@ Range[#2]]], q = Times @@ Prime@ Range[#2 + 1]]; k = q/#3; mm = m[k]; While[Or[c[k*mm], ! Divisible[q, Times @@ f[mm]]], mm++]; k *= mm; While[c[k*m[k]], m[k]++]) & @@ {#, PrimePi@ Last[#], Times @@ #} &[f[j]]; Set[{a[n], c[k], j}, {k, True, k}], {n, 3, nn}]; Array[a, nn]
Formula
a(n) = A002110(k) --> a(n+1) = prime(k+1); a(n+2) = 2*a(n), a(n+3) = 2*prime(k+1) (n >= 1).
Extensions
More terms from Michael De Vlieger, May 18 2024
Comments