This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372722 #21 May 12 2024 14:21:10 %S A372722 1,0,1,0,1,1,0,4,0,1,0,11,3,0,1,0,36,15,0,0,1,0,132,55,15,0,0,1,0,596, %T A372722 175,105,0,0,0,1,0,2809,805,420,105,0,0,0,1,0,14608,4053,1540,945,0,0, %U A372722 0,0,1,0,79448,24906,5950,4725,945,0,0,0,0,1,0,461748,151371,37730,17325,10395,0,0,0,0,0,1 %N A372722 Number T(n,k) of partitions of [n] having exactly k blocks of maximal size; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A372722 Alois P. Heinz, <a href="/A372722/b372722.txt">Rows n = 0..140, flattened</a> %H A372722 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A372722 Sum_{k=0..n} k * T(n,k) = A372649(n). %e A372722 T(4,1) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34. %e A372722 T(4,2) = 3: 12|34, 13|24, 14|23. %e A372722 T(4,3) = 0. %e A372722 T(4,4) = 1: 1|2|3|4. %e A372722 Triangle T(n,k) begins: %e A372722 1; %e A372722 0, 1; %e A372722 0, 1, 1; %e A372722 0, 4, 0, 1; %e A372722 0, 11, 3, 0, 1; %e A372722 0, 36, 15, 0, 0, 1; %e A372722 0, 132, 55, 15, 0, 0, 1; %e A372722 0, 596, 175, 105, 0, 0, 0, 1; %e A372722 0, 2809, 805, 420, 105, 0, 0, 0, 1; %e A372722 0, 14608, 4053, 1540, 945, 0, 0, 0, 0, 1; %e A372722 0, 79448, 24906, 5950, 4725, 945, 0, 0, 0, 0, 1; %e A372722 ... %p A372722 b:= proc(n, m, t) option remember; `if`(n=0, x^t, %p A372722 add(binomial(n-1, j-1)*b(n-j, max(j, m), %p A372722 `if`(j>m, 1, `if`(j=m, t+1, t))), j=1..n)) %p A372722 end: %p A372722 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0$2)): %p A372722 seq(T(n), n=0..12); %Y A372722 Columns k=0-1 give: A000007, A372721. %Y A372722 Row sums give A000110. %Y A372722 T(2n,n) gives A001147. %Y A372722 T(3n,n) gives A271715. %Y A372722 Cf. A372649, A372762. %K A372722 nonn,tabl %O A372722 0,8 %A A372722 _Alois P. Heinz_, May 11 2024