A372739 a(n) is the number of possible values of k such that the sum of aliquot coreful divisors of k (A336563) is n.
0, 1, 1, 0, 1, 3, 1, 0, 0, 2, 1, 1, 1, 3, 2, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 2, 0, 0, 1, 6, 1, 0, 2, 2, 2, 1, 1, 2, 3, 0, 1, 5, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 2, 1, 2, 1, 3, 0, 0, 2, 4, 1, 0, 2, 4, 1, 0, 1, 2, 0, 0, 2, 5, 1, 1, 0, 2, 1, 1, 2, 2, 2
Offset: 1
Keywords
Examples
a(2) = 1 since there is 1 possible value of k, k = 4, such that A336563(k) = 2. a(6) = 3 since there are 3 possible values of k, k = 8, 12 and 18, such that A336563(k) = 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = s[k]; If[0 < i <= max, v[[i]]++], {k, 1, max^2}]; v]; seq[100]
-
PARI
s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1) - n;} lista(nmax) = {my(v = vector(nmax), i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); v;}
Comments