This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372749 #18 Mar 09 2025 12:51:44 %S A372749 4,17,23,32,45,58,64,77,83,92,105,111,120,133,146,152,161,174,187,193, %T A372749 206,212,221,234,247,253,266,272,281,294,300,309,322,335,341,354,360, %U A372749 369,382,388,397,410,423,429,438,451,464,470,483,489,498,511,517,526,539 %N A372749 4th column of the 3-Zeckendorf array (A136189). %C A372749 The 3-Zeckendorf array (A136189) is based on the Narayana (Narayana's cow sequence A000930) weighted representation of n (see A350215). %H A372749 Larry Ericksen and Peter G. Anderson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/50-1/EricksenAnderson.pdf">Patterns in differences between rows in k-Zeckendorf arrays</a>, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18. %H A372749 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/33-1/kimberling.pdf">The Zeckendorf array equals the Wythoff array</a>, Fibonacci Quarterly 33 (1995) 3-8. %F A372749 a(n) = A202342(n) + A136496(n) + A381841(n) - 2. - _Jeffrey Shallit_, Mar 08 2025 %Y A372749 Cf. A000930, A136189, A350215. %Y A372749 The k-th row: A000930(n+2) (k=1) %Y A372749 The k-th column: A020942 (k=1), A064105 (k=2), A064106 (k=3), this sequence (k=4), A372750 (k=5). %Y A372749 The k-th prepended column: A005374 (k=1), A202342 (k=4) %K A372749 nonn %O A372749 1,1 %A A372749 _A.H.M. Smeets_, May 12 2024