This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372752 #16 Mar 08 2025 10:58:57 %S A372752 9,37,50,69,97,125,138,166,179,198,226,239,258,286,314,327,346,374, %T A372752 402,415,443,456,475,503,531,544,572,585,604,632,645,664,692,720,733, %U A372752 761,774,793,821,834,853,881,909,922,941,969,997,1010,1038,1051,1070,1098 %N A372752 6th column of the 3-Zeckendorf array (A136189). %C A372752 The 3-Zeckendorf array (A136189) is based on the Narayana (Narayana's cow sequence A000930) weighted representation of n (see A350215). %H A372752 Larry Ericksen and Peter G. Anderson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/50-1/EricksenAnderson.pdf">Patterns in differences between rows in k-Zeckendorf arrays</a>, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18. %H A372752 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/33-1/kimberling.pdf">The Zeckendorf array equals the Wythoff array</a>, Fibonacci Quarterly 33 (1995) 3-8. %H A372752 Jeffrey Shallit, <a href="https://arxiv.org/abs/2503.01026">The Narayana Morphism and Related Words</a>, arXiv:2503.01026 [math.CO], 2025. %F A372752 a(n) = 2*A202342(n) + A136496(n) + 3*A381841(n) - 4. - _Jeffrey Shallit_, Mar 08 2025 %Y A372752 Cf. A000930, A136189, A350215. %Y A372752 The k-th row: A000930(n+2) (k=1) %Y A372752 The k-th column: A020942 (k=1), A064105 (k=2), A064106 (k=3), A372749 (k=4), A372750 (k=5), this sequence (k=6). %Y A372752 The k-th prepended column: A005374 (k=1), A202342 (k=4) %K A372752 nonn %O A372752 1,1 %A A372752 _A.H.M. Smeets_, May 12 2024