cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372756 7th column of the 3-Zeckendorf array (A136189).

This page as a plain text file.
%I A372756 #19 Mar 08 2025 11:05:48
%S A372756 13,54,73,101,142,183,202,243,262,290,331,350,378,419,460,479,507,548,
%T A372756 589,608,649,668,696,737,778,797,838,857,885,926,945,973,1014,1055,
%U A372756 1074,1115,1134,1162,1203,1222,1250,1291,1332,1351,1379,1420,1461,1480,1521
%N A372756 7th column of the 3-Zeckendorf array (A136189).
%C A372756 The 3-Zeckendorf array (A136189) is based on the Narayana (Narayana's cow sequence A000930) weighted representation of n (see A350215).
%H A372756 Larry Ericksen and Peter G. Anderson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/50-1/EricksenAnderson.pdf">Patterns in differences between rows in k-Zeckendorf arrays</a>, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18.
%H A372756 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/33-1/kimberling.pdf">The Zeckendorf array equals the Wythoff array</a>, Fibonacci Quarterly 33 (1995) 3-8.
%H A372756 Jeffrey Shallit, <a href="https://arxiv.org/abs/2503.01026">The Narayana Morphism and Related Words</a>, arXiv:2503.01026 [math.CO], 2025.
%F A372756 a(n) = 3*A202342(n) + 2*A136496(n) + 4*A381841(n) - 6. - _Jeffrey Shallit_, Mar 08 2025
%Y A372756 Cf. A000930, A136189, A350215.
%Y A372756 The k-th row: A000930(n+2) (k=1), A372760 (k=2).
%Y A372756 The k-th column: A020942 (k=1), A064105 (k=2), A064106 (k=3), A372749 (k=4), A372750 (k=5), A372752 (k=6), this sequence (k=7), A372757 (k=8).
%Y A372756 The k-th prepended column: A005374 (k=1), A136495 (k=2), A023443 (k=3), A202342 (k=4), A372758 (k=5), A372759 (k=6).
%K A372756 nonn
%O A372756 1,1
%A A372756 _A.H.M. Smeets_, May 12 2024