This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372759 #14 Jan 18 2025 03:08:55 %S A372759 0,0,1,1,1,1,2,2,3,3,3,4,4,4,4,5,5,5,5,6,6,7,7,7,7,8,8,9,9,9,10,10,10, %T A372759 10,11,11,12,12,12,13,13,13,13,14,14,14,14,15,15,16,16,16,17,17,17,17, %U A372759 18,18,18,18,19,19,20,20,20,20,21,21,22,22,22,23,23 %N A372759 6th prepended column of the 3-Zeckendorf array (A136189). %C A372759 The 3-Zeckendorf array (A136189) is based on the Narayana (Narayana's cow sequence A000930) weighted representation of n (see A350215). %H A372759 Larry Ericksen and Peter G. Anderson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/50-1/EricksenAnderson.pdf">Patterns in differences between rows in k-Zeckendorf arrays</a>, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18. %H A372759 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/33-1/kimberling.pdf">The Zeckendorf array equals the Wythoff array</a>, Fibonacci Quarterly 33 (1995) 3-8. %F A372759 a(n) = A005374(A372758(n-1)-1) for n >= 3. - _Alan Michael Gómez Calderón_, Jan 18 2025 %Y A372759 Cf. A000930, A136189, A350215. %Y A372759 The k-th row: A000930(n+2) (k=1), A372760 (k=2). %Y A372759 The k-th column: A020942 (k=1), A064105 (k=2), A064106 (k=3), A372749 (k=4), A372750 (k=5), A372752 (k=6), A372756 (k=7), A372757 (k=8). %Y A372759 The k-th prepended column: A005374 (k=1), A136495 (k=2), A023443 (k=3), A202342 (k=4), A372758 (k=5), this sequence (k=6). %K A372759 nonn %O A372759 1,7 %A A372759 _A.H.M. Smeets_, May 12 2024