This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372770 #31 Mar 14 2025 19:02:00 %S A372770 13,97,853,1021,1093,7873,8161,8377,9337,12241,62989,63853,66733, %T A372770 74797,79861,81373,82021,84181,86413,91381,92317,94477,95773,98893, %U A372770 100189,101701,111997,114157,534841,552553,556441,560977,578689,580633,591937,600361,631249 %N A372770 Primes in A284798. %C A372770 The base-b expansion (d_1)(d_2)...(d_m) of a number is antipalindromic if, for each of its m digits, it holds that d_k + d_{m-k+1} = b-1. %C A372770 In a base other than 3, there is at most a single antipalindromic prime. %C A372770 All terms have an odd number of base-3 digits. - _Robert Israel_, Mar 14 2025 %H A372770 Robert Israel, <a href="/A372770/b372770.txt">Table of n, a(n) for n = 1..10000</a> %H A372770 Lubomira Dvorakova, Stanislav Kruml, and David Ryzák, <a href="https://arxiv.org/abs/2008.06864">Antipalindromic numbers</a>, arXiv:2008.06864 [math.CO], 2020. %e A372770 For m = 3, the only solution is 13 = 111_3. %e A372770 For m = 5, the only solution is 97 = 10121_3. %p A372770 arev3:= proc(n) local L,i; %p A372770 L:= convert(n,base,3); %p A372770 add((2-L[-i])*3^(i-1),i=1..nops(L)) %p A372770 end proc; %p A372770 qprime:= proc(x) if isprime(x) then x fi end proc: %p A372770 F:= proc(d) local x,y; %p A372770 seq(qprime(x*3^((d+1)/2) + 3^((d-1)/2) + arev3(x)),x=3^((d-3)/2)..2*3^((d-3)/2)-1) %p A372770 end proc; %p A372770 [seq(F(i),i=3..13,2)]; # _Robert Israel_, Mar 14 2025 %t A372770 Select[Prime[Range[52000]], FromDigits[Reverse[2 - IntegerDigits[#, 3]], 3] == # &] (* _Amiram Eldar_, Jun 16 2024 *) %o A372770 (Python) %o A372770 from sympy import isprime %o A372770 from itertools import count, islice, product %o A372770 def bgen(): # generator of terms of A284798 %o A372770 yield 1 %o A372770 for d in count(2): %o A372770 for first in [1, 2]: %o A372770 for rest in product([0, 1, 2], repeat=(d-2)//2): %o A372770 left, mid = (first,) + rest, (1,) if d&1 else tuple() %o A372770 right = tuple([2-d for d in left][::-1]) %o A372770 yield int("".join(str(d) for d in left + mid + right), 3) %o A372770 def agen(): yield from filter(isprime, bgen()) %o A372770 print(list(islice(agen(), 40))) # _Michael S. Branicky_, Jun 16 2024 %Y A372770 Cf. A284798. %K A372770 base,nonn,easy %O A372770 1,1 %A A372770 _Stanislav Kruml_, May 12 2024