cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372780 Numbers m such that v^n - u^m >= u^(m+1) - v^n, where u=2, v=3, and u^m < v^n < u^(m+1).

This page as a plain text file.
%I A372780 #10 May 31 2024 14:26:04
%S A372780 1,3,5,8,10,13,15,17,20,22,25,27,29,32,34,37,39,41,44,46,49,51,54,56,
%T A372780 58,61,63,66,68,70,73,75,78,80,82,85,87,90,92,94,97,99,102,104,107,
%U A372780 109,111,114,116,119,121,123,126,128,131,133,135,138,140,143,145
%N A372780 Numbers m such that v^n - u^m >= u^(m+1) - v^n, where u=2, v=3, and u^m < v^n < u^(m+1).
%e A372780 The condition u^m < v^n < u^(m + 1) implies m = floor(n*log(v)/log(u)). With u=2 and v=3, for n = 1, we have m = 1 and 3 - 2 >= 4 - 3, so 1 is in this sequence. For n = 2, we have m = 3 and 9 - 8 < 16 - 9, so 2 is in A372779.
%t A372780 z = 200; {u, v} = {2, 3};
%t A372780 m[n_] := Floor[n*Log[v]/Log[u]];
%t A372780 Table[m[n], {n, 0, z}];
%t A372780 s = Select[Range[z], v^# - u^m[#] < u^(m[#] + 1) - v^# &]  (* A372779 *)
%t A372780 Complement[Range[Max[s]], s]   (* this sequence *)
%Y A372780 Cf. A000079, A000244, A056576, A372779 (complement).
%K A372780 nonn
%O A372780 1,2
%A A372780 _Clark Kimberling_, May 18 2024