A372798 Smallest prime p such that the multiplicative order of 8 modulo p is n, or 0 if no such prime exists.
3, 17, 13, 113, 251, 7, 1163, 89, 109, 431, 1013, 577, 4421, 953, 571, 257, 4523, 127, 15467, 3761, 3109, 7151, 18539, 73, 25301, 14327, 2971, 42953, 72269, 151, 683, 12641, 331, 2687, 42701, 5113, 18797, 1103, 8581, 13121, 172283, 631, 221021, 120737, 3061, 5153, 217517
Offset: 1
Keywords
Examples
In the following examples let () denote the reptend. The prime numbers themselves and the fractions are written out in decimal. The base-8 expansion of 1/3 is 0.(25), so the reptend has length 2 = (3-1)/1. Also, the base-8 expansions of 1/3 = 0.(25) and 2/3 = 0.(52) have only one cycle 25. 3 is the smallest such prime, so a(1) = 3. The base-8 expansion of 1/17 is 0.(03607417), so the reptend has length 8 = (17-1)/2. Also, the base-8 expansions of 1/17, 2/17, ..., 16/17 have two cycles 03607417 and 13226455. 17 is the smallest such prime, so a(2) = 17. The base-8 expansion of 1/13 is 0.(0473), so the reptend has length 4 = (13-1)/3. Also, the base-8 expansions of 1/13, 2/13, ..., 12/13 have three cycles 0473, 1166 and 2354. 13 is the smallest such prime, so a(3) = 13.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
a[n_] := a[n] = For[p = 2, True, p = NextPrime[p], If[MultiplicativeOrder[8, p] == (p-1)/n, Return[p]]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 24 2024 *)
-
PARI
a(n,{base=8}) = forprime(p=2, oo, if((base%p) && znorder(Mod(base,p)) == (p-1)/(n * if(issquare(base), 2, 1)), return(p)))
Comments