A372823 Sequence formed as follows: for each k >= 0, insert between 3^k and 3^(k+1) the least power of 2 that is in the interval [3^k, 3^(k+1)], and then arrange the resulting numbers in nondecreasing order.
1, 1, 3, 4, 9, 16, 27, 32, 81, 128, 243, 256, 729, 1024, 2187, 4096, 6561, 8192, 19683, 32768, 59049, 65536, 177147, 262144, 531441, 1048576, 1594323, 2097152, 4782969, 8388608, 14348907, 16777216, 43046721, 67108864, 129140163, 134217728, 387420489
Offset: 0
Examples
3^0 <= 2^0 < 3^1 < 2^2 < 3^2 < 2^4 < 3^3 < ...
Programs
-
Maple
[seq(op([3^i, 2^ceil(log[2](3^i))]),i=0..50)]; # Robert Israel, May 22 2024
-
Mathematica
a[n_] := If[EvenQ[n], 3^(n/2), 2^Ceiling[((n - 1)/2) Log[3]/Log[2]]] Table[a[n], {n, 0, 37}]