cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372841 4-full numbers that are not prime powers.

Original entry on oeis.org

1296, 2592, 3888, 5184, 7776, 10000, 10368, 11664, 15552, 20000, 20736, 23328, 31104, 34992, 38416, 40000, 41472, 46656, 50000, 50625, 62208, 69984, 76832, 80000, 82944, 93312, 100000, 104976, 124416, 139968, 151875, 153664, 160000, 165888, 186624, 194481, 200000
Offset: 1

Views

Author

Michael De Vlieger, May 14 2024

Keywords

Comments

Numbers k such that rad(k)^4 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 3.
Proper subset of the following sequences: A001694, A036966, A036967, A126706, A286708, A372695.
Smallest term k with omega(k) = m is k = A002110(m)^4.

Examples

			Table of smallest 12 terms:
   n      a(n)
  -----------------------
   1     1296 = 2^4 * 3^4
   2     2592 = 2^5 * 3^4
   3     3888 = 2^4 * 3^5
   4     5184 = 2^6 * 3^4
   5     7776 = 2^5 * 3^5
   6    10000 = 2^4 * 5^4
   7    10368 = 2^7 * 3^4
   8    11664 = 2^4 * 3^6
   9    15552 = 2^6 * 3^5
  10    20000 = 2^5 * 5^4
  11    20736 = 2^8 * 3^4
  12    23328 = 2^5 * 3^6
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 200000}, Rest@ Select[Union@ Flatten@ Table[a^7 * b^6 * c^5 * d^4, {d, Surd[nn, 4]}, {c, Surd[nn/(d^4), 5]}, {b, Surd[nn/(c^5 * d^4), 6]}, {a, Surd[nn/(b^6 * c^5 * d^4), 7]}], Not@*PrimePowerQ]]
  • Python
    from math import gcd
    from sympy import primepi, integer_nthroot, factorint
    def A372841(n):
        def f(x):
            c = n+x+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(4, x.bit_length()))
            for u in range(1,integer_nthroot(x,7)[0]+1):
                if all(d<=1 for d in factorint(u).values()):
                    for w in range(1,integer_nthroot(a:=x//u**7,6)[0]+1):
                        if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()):
                            for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1):
                                if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()):
                                    c -= integer_nthroot(z//y**5,4)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Intersection of A036967 and A024619.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) - Sum_{p prime} 1/(p^3*(p-1)) - 1 = 0.0026996042121456100761... . - Amiram Eldar, May 17 2024