A372841 4-full numbers that are not prime powers.
1296, 2592, 3888, 5184, 7776, 10000, 10368, 11664, 15552, 20000, 20736, 23328, 31104, 34992, 38416, 40000, 41472, 46656, 50000, 50625, 62208, 69984, 76832, 80000, 82944, 93312, 100000, 104976, 124416, 139968, 151875, 153664, 160000, 165888, 186624, 194481, 200000
Offset: 1
Keywords
Examples
Table of smallest 12 terms: n a(n) ----------------------- 1 1296 = 2^4 * 3^4 2 2592 = 2^5 * 3^4 3 3888 = 2^4 * 3^5 4 5184 = 2^6 * 3^4 5 7776 = 2^5 * 3^5 6 10000 = 2^4 * 5^4 7 10368 = 2^7 * 3^4 8 11664 = 2^4 * 3^6 9 15552 = 2^6 * 3^5 10 20000 = 2^5 * 5^4 11 20736 = 2^8 * 3^4 12 23328 = 2^5 * 3^6
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{nn = 200000}, Rest@ Select[Union@ Flatten@ Table[a^7 * b^6 * c^5 * d^4, {d, Surd[nn, 4]}, {c, Surd[nn/(d^4), 5]}, {b, Surd[nn/(c^5 * d^4), 6]}, {a, Surd[nn/(b^6 * c^5 * d^4), 7]}], Not@*PrimePowerQ]]
-
Python
from math import gcd from sympy import primepi, integer_nthroot, factorint def A372841(n): def f(x): c = n+x+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(4, x.bit_length())) for u in range(1,integer_nthroot(x,7)[0]+1): if all(d<=1 for d in factorint(u).values()): for w in range(1,integer_nthroot(a:=x//u**7,6)[0]+1): if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()): for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1): if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()): c -= integer_nthroot(z//y**5,4)[0] return c def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Formula
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) - Sum_{p prime} 1/(p^3*(p-1)) - 1 = 0.0026996042121456100761... . - Amiram Eldar, May 17 2024
Comments