This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372850 #6 May 17 2024 19:47:20 %S A372850 3,6,9,10,12,18,20,22,24,27,30,36,40,42,44,46,48,50,54,60,66,70,72,80, %T A372850 81,84,88,90,92,96,100,102,108,114,118,120,126,130,132,140,144,150, %U A372850 160,162,168,176,180,182,184,192,198,200,204,216,228,236,238,240,242 %N A372850 Numbers whose distinct prime indices are the binary indices of some prime number. %C A372850 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372850 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372850 Note the function taking a set s to its rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices). %F A372850 Numbers k such that Sum_{i:prime(i)|k} 2^(i-1) is prime, where the sum is over the distinct prime indices of k. %e A372850 The distinct prime indices of 45 are {2,3}, which are the binary indices of 6, which is not prime, so 45 is not in the sequence. %e A372850 The distinct prime indices of 60 are {1,2,3}, which are the binary indices of 7, which is prime, so 60 is in the sequence. %e A372850 The terms together with their prime indices begin: %e A372850 3: {2} %e A372850 6: {1,2} %e A372850 9: {2,2} %e A372850 10: {1,3} %e A372850 12: {1,1,2} %e A372850 18: {1,2,2} %e A372850 20: {1,1,3} %e A372850 22: {1,5} %e A372850 24: {1,1,1,2} %e A372850 27: {2,2,2} %e A372850 30: {1,2,3} %e A372850 36: {1,1,2,2} %e A372850 40: {1,1,1,3} %e A372850 42: {1,2,4} %e A372850 44: {1,1,5} %e A372850 46: {1,9} %e A372850 48: {1,1,1,1,2} %e A372850 50: {1,3,3} %e A372850 54: {1,2,2,2} %e A372850 60: {1,1,2,3} %e A372850 66: {1,2,5} %e A372850 70: {1,3,4} %t A372850 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A372850 Select[Range[100],PrimeQ[Total[2^(Union[prix[#]]-1)]]&] %Y A372850 For even instead of prime we have A005408, with multiplicity A003159. %Y A372850 For odd instead of prime we have A005843, with multiplicity A036554. %Y A372850 For prime indices with multiplicity we have A277319, counted by A372688. %Y A372850 The squarefree case is A372851, counted by A372687. %Y A372850 Partitions of this type are counted by A372887. %Y A372850 A014499 lists binary indices of prime numbers. %Y A372850 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372850 A038499 counts partitions of prime length, strict A085756. %Y A372850 A048793 and A272020 (reverse) list binary indices: %Y A372850 - length A000120 %Y A372850 - min A001511 %Y A372850 - sum A029931 %Y A372850 - max A070939 %Y A372850 A058698 counts partitions of prime numbers, strict A064688. %Y A372850 A372885 lists primes whose binary indices sum to a prime, indices A372886. %Y A372850 Cf. A000040, A005940, A023506, A029837, A035100, A071814, A096111, A372429, A372436, A372441, A372471, A372689. %K A372850 nonn %O A372850 1,1 %A A372850 _Gus Wiseman_, May 16 2024