This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372851 #7 May 17 2024 19:47:15 %S A372851 3,6,10,22,30,42,46,66,70,102,114,118,130,182,238,246,266,318,330,354, %T A372851 370,402,406,434,442,510,546,646,654,690,762,770,798,930,938,946,962, %U A372851 986,1066,1102,1122,1178,1218,1222,1246,1258,1334,1378,1430,1482,1578 %N A372851 Squarefree numbers whose prime indices are the binary indices of some prime number. %C A372851 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372851 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A372851 Note the function taking a set s to its rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices). %F A372851 Squarefree numbers k such that Sum_{i:prime(i)|k} 2^(i-1) is prime, where the sum is over the (distinct) prime indices of k. %e A372851 The prime indices of 70 are {1,3,4}, which are the binary indices of 13, which is prime, so 70 is in the sequence. %e A372851 The prime indices of 15 are {2,3}, which are the binary indices of 6, which is not prime, so 15 is not in the sequence. %e A372851 The terms together with their prime indices begin: %e A372851 3: {2} %e A372851 6: {1,2} %e A372851 10: {1,3} %e A372851 22: {1,5} %e A372851 30: {1,2,3} %e A372851 42: {1,2,4} %e A372851 46: {1,9} %e A372851 66: {1,2,5} %e A372851 70: {1,3,4} %e A372851 102: {1,2,7} %e A372851 114: {1,2,8} %e A372851 118: {1,17} %e A372851 130: {1,3,6} %e A372851 182: {1,4,6} %e A372851 238: {1,4,7} %e A372851 246: {1,2,13} %e A372851 266: {1,4,8} %e A372851 318: {1,2,16} %e A372851 330: {1,2,3,5} %e A372851 354: {1,2,17} %e A372851 370: {1,3,12} %e A372851 402: {1,2,19} %t A372851 Select[Range[100],SquareFreeQ[#] && PrimeQ[Total[2^(PrimePi/@First/@FactorInteger[#]-1)]]&] %Y A372851 [Warning: do not confuse A372887 with the strict case A372687.] %Y A372851 For odd instead of prime we have A039956. %Y A372851 For even instead of prime we have A056911. %Y A372851 Strict partitions of this type are counted by A372687. %Y A372851 Non-strict partitions of this type are counted by A372688, ranks A277319. %Y A372851 The nonsquarefree version is A372850, counted by A372887. %Y A372851 A014499 lists binary indices of prime numbers. %Y A372851 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372851 A038499 counts partitions of prime length, strict A085756. %Y A372851 A048793 and A272020 (reverse) list binary indices: %Y A372851 - length A000120 %Y A372851 - min A001511 %Y A372851 - sum A029931 %Y A372851 - max A070939 %Y A372851 A058698 counts partitions of prime numbers, strict A064688. %Y A372851 A372885 lists primes whose binary indices sum to a prime, indices A372886. %Y A372851 Cf. A000040, A005940, A025147, A035100, A071814, A096111, A096765, A231204, A372429, A372471, A372689. %K A372851 nonn %O A372851 1,1 %A A372851 _Gus Wiseman_, May 16 2024