cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372851 Squarefree numbers whose prime indices are the binary indices of some prime number.

This page as a plain text file.
%I A372851 #7 May 17 2024 19:47:15
%S A372851 3,6,10,22,30,42,46,66,70,102,114,118,130,182,238,246,266,318,330,354,
%T A372851 370,402,406,434,442,510,546,646,654,690,762,770,798,930,938,946,962,
%U A372851 986,1066,1102,1122,1178,1218,1222,1246,1258,1334,1378,1430,1482,1578
%N A372851 Squarefree numbers whose prime indices are the binary indices of some prime number.
%C A372851 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A372851 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A372851 Note the function taking a set s to its rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).
%F A372851 Squarefree numbers k such that Sum_{i:prime(i)|k} 2^(i-1) is prime, where the sum is over the (distinct) prime indices of k.
%e A372851 The prime indices of 70 are {1,3,4}, which are the binary indices of 13, which is prime, so 70 is in the sequence.
%e A372851 The prime indices of 15 are {2,3}, which are the binary indices of 6, which is not prime, so 15 is not in the sequence.
%e A372851 The terms together with their prime indices begin:
%e A372851     3: {2}
%e A372851     6: {1,2}
%e A372851    10: {1,3}
%e A372851    22: {1,5}
%e A372851    30: {1,2,3}
%e A372851    42: {1,2,4}
%e A372851    46: {1,9}
%e A372851    66: {1,2,5}
%e A372851    70: {1,3,4}
%e A372851   102: {1,2,7}
%e A372851   114: {1,2,8}
%e A372851   118: {1,17}
%e A372851   130: {1,3,6}
%e A372851   182: {1,4,6}
%e A372851   238: {1,4,7}
%e A372851   246: {1,2,13}
%e A372851   266: {1,4,8}
%e A372851   318: {1,2,16}
%e A372851   330: {1,2,3,5}
%e A372851   354: {1,2,17}
%e A372851   370: {1,3,12}
%e A372851   402: {1,2,19}
%t A372851 Select[Range[100],SquareFreeQ[#] && PrimeQ[Total[2^(PrimePi/@First/@FactorInteger[#]-1)]]&]
%Y A372851 [Warning: do not confuse A372887 with the strict case A372687.]
%Y A372851 For odd instead of prime we have A039956.
%Y A372851 For even instead of prime we have A056911.
%Y A372851 Strict partitions of this type are counted by A372687.
%Y A372851 Non-strict partitions of this type are counted by A372688, ranks A277319.
%Y A372851 The nonsquarefree version is A372850, counted by A372887.
%Y A372851 A014499 lists binary indices of prime numbers.
%Y A372851 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372851 A038499 counts partitions of prime length, strict A085756.
%Y A372851 A048793 and A272020 (reverse) list binary indices:
%Y A372851 - length A000120
%Y A372851 - min A001511
%Y A372851 - sum A029931
%Y A372851 - max A070939
%Y A372851 A058698 counts partitions of prime numbers, strict A064688.
%Y A372851 A372885 lists primes whose binary indices sum to a prime, indices A372886.
%Y A372851 Cf. A000040, A005940, A025147, A035100, A071814, A096111, A096765, A231204, A372429, A372471, A372689.
%K A372851 nonn
%O A372851 1,1
%A A372851 _Gus Wiseman_, May 16 2024