cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372852 a(n) is the total number of runs of ascents over all flattened Catalan words of length n.

This page as a plain text file.
%I A372852 #9 May 17 2024 01:39:42
%S A372852 1,3,10,35,123,427,1460,4923,16405,54131,177150,575731,1860047,
%T A372852 5978715,19131880,60982859,193710249,613415779,1937102450,6101872707,
%U A372852 19177314211,60147030923,188286357660,588394867675,1835791987133,5719198113747,17793060798310,55285581766163
%N A372852 a(n) is the total number of runs of ascents over all flattened Catalan words of length n.
%H A372852 Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See p. 7.
%H A372852 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-22,24,-9).
%F A372852 From Baril et al.: (Start)
%F A372852 G.f.: x*(1 - 5*x + 8*x^2 - 3*x^2)/((1 - x)^2*(1 - 3*x)^2).
%F A372852 a(n) = (3^(n-1) + 1)*(n + 1)/4. (End)
%F A372852 E.g.f.: exp(x)*(exp(2*x) - 1)*(x - 2)/4.
%t A372852 LinearRecurrence[{8,-22,24,-9},{1,3,10,35},28]
%Y A372852 Cf. A007051, A372868, A372872.
%K A372852 nonn,easy
%O A372852 1,2
%A A372852 _Stefano Spezia_, May 15 2024