cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372855 Number of ways two dihexes can be placed on an n-th regular hexagonal board.

This page as a plain text file.
%I A372855 #34 Aug 28 2024 04:18:25
%S A372855 0,33,702,3630,11409,27603,56748,104352,176895,281829,427578,623538,
%T A372855 880077,1208535,1621224,2131428,2753403,3502377,4394550,5447094,
%U A372855 6678153,8106843,9753252,11638440,13784439,16214253,18951858,22022202,25451205,29265759,33493728
%N A372855 Number of ways two dihexes can be placed on an n-th regular hexagonal board.
%H A372855 Paolo Xausa, <a href="/A372855/b372855.txt">Table of n, a(n) for n = 1..10000</a>
%H A372855 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A372855 a(n) = (3/2)*(27*n^4 - 90*n^3 + 78*n^2 + 11*n - 24), for n > 1.
%F A372855 a(n) = 5*a(n - 1) - 10*a(n - 2) + 10*a(n - 3) - 5*a(n - 4) + a(n - 5) for n > 6.
%F A372855 G.f.: 3*x^2*(11 + 179*x + 150*x^2 - 17*x^3 + x^4)/(1 - x)^5.
%F A372855 E.g.f.: 36 - 3*x + 3*exp(x)*(27*x^4 + 72*x^3 - 3*x^2 + 26*x - 24)/2. - _Stefano Spezia_, Jun 04 2024
%e A372855 Regular hexagonal boards n = 1...4:
%e A372855 . ___
%e A372855 ./   \
%e A372855 .\___/
%e A372855 .     ___
%e A372855 . ___/   \___
%e A372855 ./   \___/   \
%e A372855 .\___/   \___/
%e A372855 ./   \___/   \
%e A372855 .\___/   \___/
%e A372855 .    \___/
%e A372855 .         ___
%e A372855 .     ___/   \___
%e A372855 . ___/   \___/   \___
%e A372855 ./   \___/   \___/   \
%e A372855 .\___/   \___/   \___/
%e A372855 ./   \___/   \___/   \
%e A372855 .\___/   \___/   \___/
%e A372855 ./   \___/   \___/   \
%e A372855 .\___/   \___/   \___/
%e A372855 .    \___/   \___/
%e A372855 .        \___/
%e A372855 .             ___
%e A372855 .         ___/   \___
%e A372855 .     ___/   \___/   \___
%e A372855 . ___/   \___/   \___/   \___
%e A372855 ./   \___/   \___/   \___/   \
%e A372855 .\___/   \___/   \___/   \___/
%e A372855 ./   \___/   \___/   \___/   \
%e A372855 .\___/   \___/   \___/   \___/
%e A372855 ./   \___/   \___/   \___/   \
%e A372855 .\___/   \___/   \___/   \___/
%e A372855 ./   \___/   \___/   \___/   \
%e A372855 .\___/   \___/   \___/   \___/
%e A372855 .    \___/   \___/   \___/
%e A372855 .        \___/   \___/
%e A372855 .            \___/
%e A372855 For n = 2 the a(2) = 33: (without grid)
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   x---x   .   x---x   .   x---x   .
%e A372855 .           .           .           .
%e A372855 . x---x   o . o   x---x . o   o   o .
%e A372855 .           .           .           .
%e A372855 .   o   o   .   o   o   .   x---x   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   x---x   .   x---x   .   x---x   .
%e A372855 .           .           .           .
%e A372855 . x   o   o . o   x   o . o   x   o .
%e A372855 .  \        .      \    .    /      .
%e A372855 .   x   o   .   o   x   .   x   o   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   x---x   .   o   o   .   o   x   .
%e A372855 .           .           .        \  .
%e A372855 . o   o   x . x---x   o . x---x   x .
%e A372855 .        /  .           .           .
%e A372855 .   o   x   .   x---x   .   o   o   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   o   o   .   o   o   .   o   o   .
%e A372855 .           .           .           .
%e A372855 . x---x   x . o   x---x . x   x---x .
%e A372855 .        /  .           .  \        .
%e A372855 .   o   x   .   x---x   .   x   o   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   x   o   .   x   o   .   o   x   .
%e A372855 .  /        .    \      .        \  .
%e A372855 . x   x---x . o   x   o . o   o   x .
%e A372855 .           .           .           .
%e A372855 .   o   o   .   x---x   .   x---x   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   x   o   .   o   x   .   x   x   .
%e A372855 .  /        .      /    .    \   \  .
%e A372855 . x   o   o . o   x   o . o   x   x .
%e A372855 .           .           .           .
%e A372855 .   x---x   .   x---x   .   o   o   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   x   o   .   x   o   .   o   x   .
%e A372855 .    \      .    \      .        \  .
%e A372855 . x   x   o . o   x   x . x   o   x .
%e A372855 .  \        .        /  .  \        .
%e A372855 .   x   o   .   o   x   .   x   o   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   o   x   .   x   x   .   o   x   .
%e A372855 .        \  .  /     \  .        \  .
%e A372855 . o   x   x . x   o   x . o   x   x .
%e A372855 .      \    .           .    /      .
%e A372855 .   o   x   .   o   o   .   x   o   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   o   o   .   o   x   .   o   o   .
%e A372855 .           .      /    .           .
%e A372855 . x   x   o . x   x   o . x   o   x .
%e A372855 .  \   \    .  \        .  \     /  .
%e A372855 .   x   x   .   x   o   .   x   x   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   x   o   .   x   x   .   x   o   .
%e A372855 .  /        .  /   /    .  /        .
%e A372855 . x   x   o . x   x   o . x   x   o .
%e A372855 .      \    .           .    /      .
%e A372855 .   o   x   .   o   o   .   x   o   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%e A372855 .   x   o   .   o   x   .   o   o   .
%e A372855 .  /        .      /    .           .
%e A372855 . x   o   x . o   x   x . o   x   x .
%e A372855 .        /  .        /  .    /   /  .
%e A372855 .   o   x   .   o   x   .   x   x   .
%e A372855 . . . . . . . . . . . . . . . . . . .
%t A372855 LinearRecurrence[{5, -10, 10, -5, 1}, {0, 33, 702, 3630, 11409, 27603}, 50] (* _Paolo Xausa_, Aug 28 2024 *)
%Y A372855 Cf. A000384, A242856.
%K A372855 nonn,easy
%O A372855 1,2
%A A372855 _Nicolas Bělohoubek_, May 15 2024