This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372855 #34 Aug 28 2024 04:18:25 %S A372855 0,33,702,3630,11409,27603,56748,104352,176895,281829,427578,623538, %T A372855 880077,1208535,1621224,2131428,2753403,3502377,4394550,5447094, %U A372855 6678153,8106843,9753252,11638440,13784439,16214253,18951858,22022202,25451205,29265759,33493728 %N A372855 Number of ways two dihexes can be placed on an n-th regular hexagonal board. %H A372855 Paolo Xausa, <a href="/A372855/b372855.txt">Table of n, a(n) for n = 1..10000</a> %H A372855 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A372855 a(n) = (3/2)*(27*n^4 - 90*n^3 + 78*n^2 + 11*n - 24), for n > 1. %F A372855 a(n) = 5*a(n - 1) - 10*a(n - 2) + 10*a(n - 3) - 5*a(n - 4) + a(n - 5) for n > 6. %F A372855 G.f.: 3*x^2*(11 + 179*x + 150*x^2 - 17*x^3 + x^4)/(1 - x)^5. %F A372855 E.g.f.: 36 - 3*x + 3*exp(x)*(27*x^4 + 72*x^3 - 3*x^2 + 26*x - 24)/2. - _Stefano Spezia_, Jun 04 2024 %e A372855 Regular hexagonal boards n = 1...4: %e A372855 . ___ %e A372855 ./ \ %e A372855 .\___/ %e A372855 . ___ %e A372855 . ___/ \___ %e A372855 ./ \___/ \ %e A372855 .\___/ \___/ %e A372855 ./ \___/ \ %e A372855 .\___/ \___/ %e A372855 . \___/ %e A372855 . ___ %e A372855 . ___/ \___ %e A372855 . ___/ \___/ \___ %e A372855 ./ \___/ \___/ \ %e A372855 .\___/ \___/ \___/ %e A372855 ./ \___/ \___/ \ %e A372855 .\___/ \___/ \___/ %e A372855 ./ \___/ \___/ \ %e A372855 .\___/ \___/ \___/ %e A372855 . \___/ \___/ %e A372855 . \___/ %e A372855 . ___ %e A372855 . ___/ \___ %e A372855 . ___/ \___/ \___ %e A372855 . ___/ \___/ \___/ \___ %e A372855 ./ \___/ \___/ \___/ \ %e A372855 .\___/ \___/ \___/ \___/ %e A372855 ./ \___/ \___/ \___/ \ %e A372855 .\___/ \___/ \___/ \___/ %e A372855 ./ \___/ \___/ \___/ \ %e A372855 .\___/ \___/ \___/ \___/ %e A372855 ./ \___/ \___/ \___/ \ %e A372855 .\___/ \___/ \___/ \___/ %e A372855 . \___/ \___/ \___/ %e A372855 . \___/ \___/ %e A372855 . \___/ %e A372855 For n = 2 the a(2) = 33: (without grid) %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . x---x . x---x . x---x . %e A372855 . . . . %e A372855 . x---x o . o x---x . o o o . %e A372855 . . . . %e A372855 . o o . o o . x---x . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . x---x . x---x . x---x . %e A372855 . . . . %e A372855 . x o o . o x o . o x o . %e A372855 . \ . \ . / . %e A372855 . x o . o x . x o . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . x---x . o o . o x . %e A372855 . . . \ . %e A372855 . o o x . x---x o . x---x x . %e A372855 . / . . . %e A372855 . o x . x---x . o o . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . o o . o o . o o . %e A372855 . . . . %e A372855 . x---x x . o x---x . x x---x . %e A372855 . / . . \ . %e A372855 . o x . x---x . x o . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . x o . x o . o x . %e A372855 . / . \ . \ . %e A372855 . x x---x . o x o . o o x . %e A372855 . . . . %e A372855 . o o . x---x . x---x . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . x o . o x . x x . %e A372855 . / . / . \ \ . %e A372855 . x o o . o x o . o x x . %e A372855 . . . . %e A372855 . x---x . x---x . o o . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . x o . x o . o x . %e A372855 . \ . \ . \ . %e A372855 . x x o . o x x . x o x . %e A372855 . \ . / . \ . %e A372855 . x o . o x . x o . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . o x . x x . o x . %e A372855 . \ . / \ . \ . %e A372855 . o x x . x o x . o x x . %e A372855 . \ . . / . %e A372855 . o x . o o . x o . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . o o . o x . o o . %e A372855 . . / . . %e A372855 . x x o . x x o . x o x . %e A372855 . \ \ . \ . \ / . %e A372855 . x x . x o . x x . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . x o . x x . x o . %e A372855 . / . / / . / . %e A372855 . x x o . x x o . x x o . %e A372855 . \ . . / . %e A372855 . o x . o o . x o . %e A372855 . . . . . . . . . . . . . . . . . . . %e A372855 . x o . o x . o o . %e A372855 . / . / . . %e A372855 . x o x . o x x . o x x . %e A372855 . / . / . / / . %e A372855 . o x . o x . x x . %e A372855 . . . . . . . . . . . . . . . . . . . %t A372855 LinearRecurrence[{5, -10, 10, -5, 1}, {0, 33, 702, 3630, 11409, 27603}, 50] (* _Paolo Xausa_, Aug 28 2024 *) %Y A372855 Cf. A000384, A242856. %K A372855 nonn,easy %O A372855 1,2 %A A372855 _Nicolas Bělohoubek_, May 15 2024