cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372863 Decimal expansion of Integral_{x=2..oo} 1/(x^2*log(x)) dx.

This page as a plain text file.
%I A372863 #15 Aug 31 2025 09:09:40
%S A372863 3,7,8,6,7,1,0,4,3,0,6,1,0,8,7,9,7,6,7,2,7,2,0,7,1,8,4,6,3,6,5,6,0,9,
%T A372863 8,0,5,5,1,2,3,4,0,4,0,9,7,8,2,1,3,9,9,6,9,4,4,4,2,0,9,4,1,7,3,4,5,5,
%U A372863 4,7,5,6,7,2,6,6,7,4,6,9,0,9,8,5,8,2
%N A372863 Decimal expansion of Integral_{x=2..oo} 1/(x^2*log(x)) dx.
%F A372863 Equals -li(0.5), where li(x) is the logarithmic integral. - _Andy Nicol_, Mar 08 2025
%F A372863 Equals log(2) * A232734. - _R. J. Mathar_, Aug 31 2025
%e A372863 0.37867104306108797672720718463656098055123...
%p A372863 evalf(-Li(1/2), 140);  # _Alois P. Heinz_, Mar 08 2025
%t A372863 s = Integrate[1/(x^2*Log[x]), {x, 2, Infinity}]
%t A372863 d = N[s, 100]
%t A372863 First[RealDigits[d]]
%o A372863 (PARI) intnum(x=2, +oo, 1/(x^2*log(x))) \\ _Michel Marcus_, Mar 08 2025
%Y A372863 Cf. A372856, A372862.
%K A372863 nonn,cons,changed
%O A372863 0,1
%A A372863 _Clark Kimberling_, Jun 12 2024