This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372869 #59 Dec 26 2024 13:28:36 %S A372869 5,8,1,5,8,0,3,3,5,8,8,2,8,3,2,9,8,5,6,1,4,5,0,0,6,0,7,2,2,8,0,6,5,5, %T A372869 2,4,7,7,6,3,0,5,6,6,9,6,2,0,0,9,2,3,0,1,3,6,2,1,2,1,5,5,5,1,5,7,6,7, %U A372869 1,0,4,9,1,2,4,1,9,5,3,4,0,8,9,4,9,2,0,1,2,6,9,4,1,4,2,1,2,9,0,9,2,8,0,5,9,2,1,2,8,8,7,8,6,1,7,6,8,0,8,0,4,1,3,2,1,3,6,3,7,5,7,8,3,2,6 %N A372869 Decimal expansion of the number whose continued fraction coefficients are given in A084580. %e A372869 0.5815803358828329856145006072280655247763056696200923013621215551576710... %o A372869 (Python) # Using `sample_gauss_kuzmin_distribution` function from A084580. %o A372869 from mpmath import mp, iv %o A372869 def decimal_from_cf(coeffs): %o A372869 num = iv.mpf([coeffs[-1], coeffs[-1]+1]) %o A372869 for coeff in coeffs[-2::-1]: %o A372869 num = coeff + 1/iv.mpf(num) %o A372869 return 1/num %o A372869 def get_matching_digits(interval_a, interval_b): %o A372869 match_index = 0 %o A372869 for i, j in zip(interval_a, interval_b): %o A372869 if i != j: break %o A372869 match_index += 1 %o A372869 return interval_a[:match_index] %o A372869 def compute_kuzmin_digits(prec, num_coeffs): %o A372869 assert prec > num_coeffs %o A372869 mp.dps = iv.dps = prec %o A372869 coeffs = sample_gauss_kuzmin_distribution(num_coeffs) %o A372869 x = decimal_from_cf(coeffs) %o A372869 a = mp.nstr(mp.mpf(x.a), n=prec, strip_zeros=False) %o A372869 b = mp.nstr(mp.mpf(x.b), n=prec, strip_zeros=False) %o A372869 return get_matching_digits(a, b) %o A372869 num = compute_kuzmin_digits(prec=200, num_coeffs=180) %o A372869 A372869 = [int(d) for d in num[1:] if d != '.'] %Y A372869 Cf. A084580 (continued fraction). %K A372869 cons,nonn %O A372869 0,1 %A A372869 _Jwalin Bhatt_, Jul 04 2024