cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372874 a(n) is the total number of runs of descents over all flattened Catalan words of length n.

This page as a plain text file.
%I A372874 #8 May 17 2024 01:41:34
%S A372874 1,4,14,50,179,632,2192,7478,25157,83660,275570,900506,2922935,
%T A372874 9433088,30292148,96855134,308501513,979312916,3099363926,9782367362,
%U A372874 30799928891,96758267144,303350242904,949277053190,2965510133069,9249567319772,28807812721082,89600770448618
%N A372874 a(n) is the total number of runs of descents over all flattened Catalan words of length n.
%H A372874 Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See pp. 11-12.
%H A372874 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-22,24,-9).
%F A372874 From Baril et al.: (Start)
%F A372874 G.f.: x*(1 - 4*x + 4*x^2 + 2*x^3)/((1 - x)^2*(1 - 3*x)^2).
%F A372874 a(n) = (27*n - 9 + (5*n + 1)*3^n)/36. (End)
%F A372874 E.g.f.: (8 + 9*exp(x)*(3*x - 1) + exp(3*x)*(15*x+1))/36.
%t A372874 LinearRecurrence[{8,-22,24,-9},{1,4,14,50},28]
%Y A372874 Cf. A372873.
%K A372874 nonn,easy
%O A372874 1,2
%A A372874 _Stefano Spezia_, May 15 2024