cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372878 a(n) is the sum of all symmetric valleys in the set of flattened Catalan words of length n.

This page as a plain text file.
%I A372878 #14 May 17 2024 01:42:30
%S A372878 1,7,33,133,496,1770,6142,20902,70107,232489,763927,2491107,8071234,
%T A372878 26007364,83402988,266351548,847482277,2687729595,8499036925,
%U A372878 26804655025,84336597636,264777690382,829636763338,2594821366338,8102197327711,25259791668925,78638974063827
%N A372878 a(n) is the sum of all symmetric valleys in the set of flattened Catalan words of length n.
%C A372878 The g.f. listed in Baril et al. has a mistake in the numerator: the factor (1 + 2*x) should be (1 - 2*x).
%H A372878 Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See p. 18.
%H A372878 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-30,46,-33,9).
%F A372878 From Baril et al.: (Start)
%F A372878 G.f.: x^4*(1 - 2*x)/((1 - 3*x)^2*(1 - x)^3).
%F A372878 a(n) = (3^n*(2*n - 5) - 18*n^2 + 54*n - 27)/144. (End)
%F A372878 E.g.f.: (32 + exp(3*x)*(6*x - 5) - 9*exp(x)*(2*x^2 - 4*x + 3))/144.
%F A372878 a(n) - a(n-1) = A261064(n-3).
%t A372878 LinearRecurrence[{9,-30,46,-33,9},{1,7,33,133,496},28]
%Y A372878 Cf. A261064, A371963, A371964, A372875.
%K A372878 nonn,easy
%O A372878 4,2
%A A372878 _Stefano Spezia_, May 15 2024