This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372880 #28 Jun 23 2024 08:38:54 %S A372880 1,3,12,36,612,1836,168912,10810368,16366897152,51703028103168, %T A372880 1563447866811697152,23520172003575940628103168, %U A372880 1155558163424267804668132116971520,12369352104691609178206055357839959406281031680 %N A372880 a(1) = 1; a(2) = 3; for n > 2, a(n) is the smallest proper multiple of a(n-1) that contains a(n-2) as subsequence of its digits. %C A372880 It is unknown whether a(n+1)/a(n) -> oo as n -> oo. %C A372880 The same rule starting from terms 1, 2 gives A004643 and its multiples are as easy as A004643(n+1)/A004643(n) = 2 or 5 alternately. %H A372880 Kevin Ryde, <a href="/A372880/a372880.c.txt">C Code</a> %F A372880 a(n) <= a(n-2)*10^k + (a(n-1) - (a(n-2)*10^k mod a(n-1))), where k is the number of decimal digits in a(n-1). - _Michael S. Branicky_, May 17 2024 %e A372880 a(7) = 168912; 16812 = 92*1836 = 92*a(6) and "16812" contains a(5) = 612 as a subsequence. %o A372880 (Python) %o A372880 def subseq(x,y): %o A372880 i = 0 %o A372880 j = 0 %o A372880 while i != len(x) and j != len(y): %o A372880 if x[i] == y[j]: %o A372880 i += 1 %o A372880 j += 1 %o A372880 return i == len(x) %o A372880 def a(n): %o A372880 if n == 1: %o A372880 return 1 %o A372880 A = 1 %o A372880 B = 3 %o A372880 for _ in range(n-2): %o A372880 s = str(A) %o A372880 i = 1 %o A372880 while not subseq(s, str(B*i)): %o A372880 i += 1 %o A372880 A, B = B, B*i %o A372880 return B %o A372880 (Python) %o A372880 from itertools import count, islice %o A372880 def is_subseq(s, p): %o A372880 while s and p: %o A372880 if p%10 == s%10: s //= 10 %o A372880 p //= 10 %o A372880 return s == 0 %o A372880 def agen(): # generator of terms %o A372880 an2, an1 = [1, 3] %o A372880 yield from [an2, an1] %o A372880 while True: %o A372880 an = next(i*an1 for i in count(1) if is_subseq(an2, i*an1)) %o A372880 an2, an1 = an1, an %o A372880 yield an %o A372880 print(list(islice(agen(), 11))) # _Michael S. Branicky_, May 15 2024 %o A372880 (C) /* See links. */ %Y A372880 Cf. A004643. %K A372880 nonn,base,more %O A372880 1,2 %A A372880 _Bryle Morga_, May 15 2024 %E A372880 a(12)-a(13) from _Michael S. Branicky_, May 15 2024 %E A372880 a(14) from _Kevin Ryde_, Jun 23 2024