This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372882 #17 May 25 2024 09:14:29 %S A372882 1,3,5,10,9,15,13,36,33,27,21,50,25,39,45,104,33,99,37,90,65,63,45, %T A372882 180,145,75,261,130,57,135,61,336,105,99,117,330,73,111,125,324,81, %U A372882 195,85,210,297,135,93,520,385,435,165,250,105,783,189,468,185,171,117,450 %N A372882 a(n) = Sum_{k=1..n} gcd(k^3,n). %H A372882 Seiichi Manyama, <a href="/A372882/b372882.txt">Table of n, a(n) for n = 1..10000</a> %H A372882 László Tóth, <a href="http://www.seminariomatematico.polito.it/rendiconti/69-1/97.pdf">Menon's identity and arithmetical sums representing functions of several variables</a>, Rend. Sem. Mat. Univ. Politec. Torino, Vol. 69, No. 1 (2011), pp. 97-110. %F A372882 From _Amiram Eldar_, May 24 2024: (Start) %F A372882 a(n) = n * Sum_{d|n} A000010(d)*A000189(d)/d (Tóth, 2011). %F A372882 Multiplicative with a(p^e) = p^e * (1 + ((p-1)/p) * Sum_{i=1..e} p^(floor(2*i/3))). (End) %t A372882 a[n_] := Sum[GCD[k^3, n], {k, 1, n}]; Array[a, 100] (* _Amiram Eldar_, May 24 2024 *) %o A372882 (PARI) a(n) = sum(k=1, n, gcd(k^3, n)); %Y A372882 Cf. A018804, A078430. %Y A372882 Cf. A000010, A000189. %K A372882 nonn,mult %O A372882 1,2 %A A372882 _Seiichi Manyama_, May 15 2024