cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372884 a(n) is the sum of all symmetric peaks in the set of flattened Catalan words of length n.

This page as a plain text file.
%I A372884 #10 May 17 2024 01:43:30
%S A372884 1,5,19,67,230,778,2602,8618,28303,92275,298949,963253,3089020,
%T A372884 9864896,31388260,99545572,314779181,992765041,3123577735,9806581175,
%U A372884 30727287586,96104495110,300081382574,935547839662,2912554595035,9055397013503,28119390725977,87217771234633
%N A372884 a(n) is the sum of all symmetric peaks in the set of flattened Catalan words of length n.
%H A372884 Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See p. 22.
%H A372884 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-30,46,-33,9).
%F A372884 From Baril et al.: (Start)
%F A372884 G.f.: (1 - 2*x)^2*x^3/((1 - 3*x)^2*(1 - x)^3).
%F A372884 a(n) = (63 + 3^n + 2*(3^n - 45)*n + 18*n^2)/144. (End)
%F A372884 E.g.f.: (exp(3*x)*(1 + 6*x) + 9*exp(x)*(7 - 8*x + 2*x^2) - 64)/144.
%t A372884 LinearRecurrence[{9,-30,46,-33,9},{1,5,19,67,230},28]
%Y A372884 Cf. A372879, A372883.
%K A372884 nonn,easy
%O A372884 3,2
%A A372884 _Stefano Spezia_, May 15 2024