cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372885 Prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number.

This page as a plain text file.
%I A372885 #13 Jun 20 2025 10:47:03
%S A372885 2,3,11,23,29,41,43,61,71,79,89,101,103,113,131,137,149,151,163,181,
%T A372885 191,197,211,239,269,271,281,293,307,331,349,353,373,383,401,433,457,
%U A372885 491,503,509,523,541,547,593,641,683,701,709,743,751,761,773,827,863,887
%N A372885 Prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number.
%C A372885 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A372885 The indices of these primes are A372886.
%H A372885 Robert Israel, <a href="/A372885/b372885.txt">Table of n, a(n) for n = 1..10000</a>
%e A372885 The binary indices of 89 are {1,4,5,7}, with sum 17, which is prime, so 89 is in the sequence.
%e A372885 The terms together with their binary expansions and binary indices begin:
%e A372885     2:         10 ~ {2}
%e A372885     3:         11 ~ {1,2}
%e A372885    11:       1011 ~ {1,2,4}
%e A372885    23:      10111 ~ {1,2,3,5}
%e A372885    29:      11101 ~ {1,3,4,5}
%e A372885    41:     101001 ~ {1,4,6}
%e A372885    43:     101011 ~ {1,2,4,6}
%e A372885    61:     111101 ~ {1,3,4,5,6}
%e A372885    71:    1000111 ~ {1,2,3,7}
%e A372885    79:    1001111 ~ {1,2,3,4,7}
%e A372885    89:    1011001 ~ {1,4,5,7}
%e A372885   101:    1100101 ~ {1,3,6,7}
%e A372885   103:    1100111 ~ {1,2,3,6,7}
%e A372885   113:    1110001 ~ {1,5,6,7}
%e A372885   131:   10000011 ~ {1,2,8}
%e A372885   137:   10001001 ~ {1,4,8}
%e A372885   149:   10010101 ~ {1,3,5,8}
%e A372885   151:   10010111 ~ {1,2,3,5,8}
%e A372885   163:   10100011 ~ {1,2,6,8}
%e A372885   181:   10110101 ~ {1,3,5,6,8}
%e A372885   191:   10111111 ~ {1,2,3,4,5,6,8}
%e A372885   197:   11000101 ~ {1,3,7,8}
%p A372885 filter:= proc(p)
%p A372885   local L,i,t;
%p A372885   L:= convert(p,base,2);
%p A372885   isprime(add(i*L[i],i=1..nops(L)))
%p A372885 end proc:
%p A372885 select(filter, [seq(ithprime(i),i=1..200)]); # _Robert Israel_, Jun 19 2025
%t A372885 Select[Range[100],PrimeQ[#] && PrimeQ[Total[First/@Position[Reverse[IntegerDigits[#,2]],1]]]&]
%Y A372885 For prime instead of binary indices we have A006450, prime case of A316091.
%Y A372885 Prime numbers p such that A029931(p) is also prime.
%Y A372885 Prime case of A372689.
%Y A372885 The indices of these primes are A372886.
%Y A372885 A000040 lists the prime numbers, A014499 their binary indices.
%Y A372885 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372885 A058698 counts partitions of prime numbers, strict A064688.
%Y A372885 A372687 counts strict partitions of prime binary rank, counted by A372851.
%Y A372885 A372688 counts partitions of prime binary rank, with Heinz numbers A277319.
%Y A372885 Binary indices:
%Y A372885 - listed A048793, sum A029931
%Y A372885 - reversed A272020
%Y A372885 - opposite A371572, sum A230877
%Y A372885 - length A000120, complement A023416
%Y A372885 - min A001511, opposite A000012
%Y A372885 - max A070939, opposite A070940
%Y A372885 - complement A368494, sum A359400
%Y A372885 - opposite complement A371571, sum A359359
%Y A372885 Cf. A000009, A029837, A035100, A038499, A096111, A372429, A372441, A372471, A372850, A372887.
%K A372885 nonn,base
%O A372885 1,1
%A A372885 _Gus Wiseman_, May 19 2024