This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372885 #13 Jun 20 2025 10:47:03 %S A372885 2,3,11,23,29,41,43,61,71,79,89,101,103,113,131,137,149,151,163,181, %T A372885 191,197,211,239,269,271,281,293,307,331,349,353,373,383,401,433,457, %U A372885 491,503,509,523,541,547,593,641,683,701,709,743,751,761,773,827,863,887 %N A372885 Prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number. %C A372885 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A372885 The indices of these primes are A372886. %H A372885 Robert Israel, <a href="/A372885/b372885.txt">Table of n, a(n) for n = 1..10000</a> %e A372885 The binary indices of 89 are {1,4,5,7}, with sum 17, which is prime, so 89 is in the sequence. %e A372885 The terms together with their binary expansions and binary indices begin: %e A372885 2: 10 ~ {2} %e A372885 3: 11 ~ {1,2} %e A372885 11: 1011 ~ {1,2,4} %e A372885 23: 10111 ~ {1,2,3,5} %e A372885 29: 11101 ~ {1,3,4,5} %e A372885 41: 101001 ~ {1,4,6} %e A372885 43: 101011 ~ {1,2,4,6} %e A372885 61: 111101 ~ {1,3,4,5,6} %e A372885 71: 1000111 ~ {1,2,3,7} %e A372885 79: 1001111 ~ {1,2,3,4,7} %e A372885 89: 1011001 ~ {1,4,5,7} %e A372885 101: 1100101 ~ {1,3,6,7} %e A372885 103: 1100111 ~ {1,2,3,6,7} %e A372885 113: 1110001 ~ {1,5,6,7} %e A372885 131: 10000011 ~ {1,2,8} %e A372885 137: 10001001 ~ {1,4,8} %e A372885 149: 10010101 ~ {1,3,5,8} %e A372885 151: 10010111 ~ {1,2,3,5,8} %e A372885 163: 10100011 ~ {1,2,6,8} %e A372885 181: 10110101 ~ {1,3,5,6,8} %e A372885 191: 10111111 ~ {1,2,3,4,5,6,8} %e A372885 197: 11000101 ~ {1,3,7,8} %p A372885 filter:= proc(p) %p A372885 local L,i,t; %p A372885 L:= convert(p,base,2); %p A372885 isprime(add(i*L[i],i=1..nops(L))) %p A372885 end proc: %p A372885 select(filter, [seq(ithprime(i),i=1..200)]); # _Robert Israel_, Jun 19 2025 %t A372885 Select[Range[100],PrimeQ[#] && PrimeQ[Total[First/@Position[Reverse[IntegerDigits[#,2]],1]]]&] %Y A372885 For prime instead of binary indices we have A006450, prime case of A316091. %Y A372885 Prime numbers p such that A029931(p) is also prime. %Y A372885 Prime case of A372689. %Y A372885 The indices of these primes are A372886. %Y A372885 A000040 lists the prime numbers, A014499 their binary indices. %Y A372885 A019565 gives Heinz number of binary indices, adjoint A048675. %Y A372885 A058698 counts partitions of prime numbers, strict A064688. %Y A372885 A372687 counts strict partitions of prime binary rank, counted by A372851. %Y A372885 A372688 counts partitions of prime binary rank, with Heinz numbers A277319. %Y A372885 Binary indices: %Y A372885 - listed A048793, sum A029931 %Y A372885 - reversed A272020 %Y A372885 - opposite A371572, sum A230877 %Y A372885 - length A000120, complement A023416 %Y A372885 - min A001511, opposite A000012 %Y A372885 - max A070939, opposite A070940 %Y A372885 - complement A368494, sum A359400 %Y A372885 - opposite complement A371571, sum A359359 %Y A372885 Cf. A000009, A029837, A035100, A038499, A096111, A372429, A372441, A372471, A372850, A372887. %K A372885 nonn,base %O A372885 1,1 %A A372885 _Gus Wiseman_, May 19 2024