cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372886 Indices of prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number.

This page as a plain text file.
%I A372886 #12 Jun 20 2025 10:46:59
%S A372886 1,2,5,9,10,13,14,18,20,22,24,26,27,30,32,33,35,36,38,42,43,45,47,52,
%T A372886 57,58,60,62,63,67,70,71,74,76,79,84,88,94,96,97,99,100,101,108,116,
%U A372886 124,126,127,132,133,135,137,144,150,154,156,160,161,162,164,172
%N A372886 Indices of prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number.
%C A372886 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A372886 The prime numbers themselves are A372885(n).
%H A372886 Robert Israel, <a href="/A372886/b372886.txt">Table of n, a(n) for n = 1..10000</a>
%e A372886 The binary indices of 89 = prime(24) are {1,4,5,7}, with sum 17, which is prime, so 24 is in the sequence.
%p A372886 filter:= proc(p)
%p A372886   local L,i,t;
%p A372886   L:= convert(p,base,2);
%p A372886   isprime(add(i*L[i],i=1..nops(L)))
%p A372886 end proc:
%p A372886 select(t -> filter(ithprime(t)), [$1..1000]); # _Robert Israel_, Jun 19 2025
%t A372886 Select[Range[100],PrimeQ[Total[First /@ Position[Reverse[IntegerDigits[Prime[#],2]],1]]]&]
%Y A372886 Numbers k such that A029931(prime(k)) is prime.
%Y A372886 Indices of primes that belong to A372689.
%Y A372886 The indexed prime numbers themselves are A372885.
%Y A372886 A000040 lists the prime numbers, A014499 their binary indices
%Y A372886 A006450 lists primes of prime index, prime case of A316091.
%Y A372886 A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A372886 A038499 counts partitions of prime length, strict A085756.
%Y A372886 Binary indices:
%Y A372886 - listed A048793, sum A029931
%Y A372886 - reversed A272020
%Y A372886 - opposite A371572, sum A230877
%Y A372886 - length A000120, complement A023416
%Y A372886 - min A001511, opposite A000012
%Y A372886 - max A070939, opposite A070940
%Y A372886 - complement A368494, sum A359400
%Y A372886 - opposite complement A371571, sum A359359
%Y A372886 A058698 counts partitions of prime numbers, strict A064688.
%Y A372886 A372687 counts strict partitions of prime binary rank, counted by A372851.
%Y A372886 A372688 counts partitions of prime binary rank, with Heinz numbers A277319.
%Y A372886 Cf. A029837, A158704, A158705, A035100, A372429, A372471, A372850.
%K A372886 nonn,base
%O A372886 1,2
%A A372886 _Gus Wiseman_, May 19 2024