This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372888 #13 May 24 2024 14:37:10 %S A372888 0,1,2,7,13,31,66,138,279,581,1173,2375,4783,9630,19316,38802,77689, %T A372888 155673,311639,623845,1248179,2497719,4996387,9995304,19992908, %U A372888 39990902,79986136,159983241,319975073,639971495,1279962115,2559966847,5119970499,10240030209 %N A372888 Sum of binary ranks of all strict integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). %H A372888 Alois P. Heinz, <a href="/A372888/b372888.txt">Table of n, a(n) for n = 0..3321</a> %F A372888 a(n) = Sum_{k=1..n} 2^(k-1) * A015716(n,k). - _Alois P. Heinz_, May 24 2024 %e A372888 The strict partitions of 6 are (6), (5,1), (4,2), (3,2,1), with respective binary ranks 32, 17, 10, 7 with sum 66, so a(6) = 66. %p A372888 b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, %p A372888 `if`(n=0, [1,0], b(n, i-1)+ (p-> [0, p[1]*2^(i-1)] %p A372888 +p)(b(n-i, min(n-i, i-1))))) %p A372888 end: %p A372888 a:= n-> b(n$2)[2]: %p A372888 seq(a(n), n=0..33); # _Alois P. Heinz_, May 23 2024 %t A372888 Table[Total[Total[2^(#-1)]& /@ Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,10}] %Y A372888 Row sums of A118462 (binary ranks of strict partitions). %Y A372888 For Heinz number the non-strict version is A145519, row sums of A215366. %Y A372888 For Heinz number (not binary rank) we have A147655, row sums of A246867. %Y A372888 The non-strict version is A372890. %Y A372888 A000009 counts strict partitions, ranks A005117. %Y A372888 A048675 gives binary rank of prime indices, distinct A087207. %Y A372888 A277905 groups all positive integers by binary rank of prime indices. %Y A372888 Binary indices (A048793): %Y A372888 - length A000120, complement A023416 %Y A372888 - min A001511, opposite A000012 %Y A372888 - max A029837 or A070939, opposite A070940 %Y A372888 - sum A029931, product A096111 %Y A372888 - reverse A272020 %Y A372888 - complement A368494, sum A359400 %Y A372888 - opposite A371572, sum A230877 %Y A372888 - opposite complement A371571, sum A359359 %Y A372888 Cf. A000041, A005940, A015716, A018819, A019565, A118457, A225620, A344086. %K A372888 nonn %O A372888 0,3 %A A372888 _Gus Wiseman_, May 23 2024