cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372888 Sum of binary ranks of all strict integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).

This page as a plain text file.
%I A372888 #13 May 24 2024 14:37:10
%S A372888 0,1,2,7,13,31,66,138,279,581,1173,2375,4783,9630,19316,38802,77689,
%T A372888 155673,311639,623845,1248179,2497719,4996387,9995304,19992908,
%U A372888 39990902,79986136,159983241,319975073,639971495,1279962115,2559966847,5119970499,10240030209
%N A372888 Sum of binary ranks of all strict integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).
%H A372888 Alois P. Heinz, <a href="/A372888/b372888.txt">Table of n, a(n) for n = 0..3321</a>
%F A372888 a(n) = Sum_{k=1..n} 2^(k-1) * A015716(n,k). - _Alois P. Heinz_, May 24 2024
%e A372888 The strict partitions of 6 are (6), (5,1), (4,2), (3,2,1), with respective binary ranks 32, 17, 10, 7 with sum 66, so a(6) = 66.
%p A372888 b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
%p A372888       `if`(n=0, [1,0], b(n, i-1)+ (p-> [0, p[1]*2^(i-1)]
%p A372888           +p)(b(n-i, min(n-i, i-1)))))
%p A372888     end:
%p A372888 a:= n-> b(n$2)[2]:
%p A372888 seq(a(n), n=0..33);  # _Alois P. Heinz_, May 23 2024
%t A372888 Table[Total[Total[2^(#-1)]& /@ Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,10}]
%Y A372888 Row sums of A118462 (binary ranks of strict partitions).
%Y A372888 For Heinz number the non-strict version is A145519, row sums of A215366.
%Y A372888 For Heinz number (not binary rank) we have A147655, row sums of A246867.
%Y A372888 The non-strict version is A372890.
%Y A372888 A000009 counts strict partitions, ranks A005117.
%Y A372888 A048675 gives binary rank of prime indices, distinct A087207.
%Y A372888 A277905 groups all positive integers by binary rank of prime indices.
%Y A372888 Binary indices (A048793):
%Y A372888 - length A000120, complement A023416
%Y A372888 - min A001511, opposite A000012
%Y A372888 - max A029837 or A070939, opposite A070940
%Y A372888 - sum A029931, product A096111
%Y A372888 - reverse A272020
%Y A372888 - complement A368494, sum A359400
%Y A372888 - opposite A371572, sum A230877
%Y A372888 - opposite complement A371571, sum A359359
%Y A372888 Cf. A000041, A005940, A015716, A018819, A019565, A118457, A225620, A344086.
%K A372888 nonn
%O A372888 0,3
%A A372888 _Gus Wiseman_, May 23 2024