This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372890 #15 May 24 2024 14:30:29 %S A372890 0,1,4,10,25,52,115,228,471,931,1871,3687,7373,14572,29049,57694, %T A372890 115058,229101,457392,912469,1822945,3640998,7277426,14544436, %U A372890 29079423,58137188,116254386,232465342,464889800,929691662,1859302291,3718428513,7436694889,14873042016 %N A372890 Sum of binary ranks of all integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). %H A372890 Alois P. Heinz, <a href="/A372890/b372890.txt">Table of n, a(n) for n = 0..3321</a> %F A372890 From _Alois P. Heinz_, May 23 2024: (Start) %F A372890 a(n) = Sum_{k=1..n} 2^(k-1) * A066633(n,k). %F A372890 a(n) mod 2 = A365410(n-1) for n>=1. (End) %e A372890 The partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1), with respective binary ranks 8, 5, 4, 4, 4 with sum 25, so a(4) = 25. %p A372890 b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], %p A372890 b(n, i-1)+(p->[0, p[1]*2^(i-1)]+p)(b(n-i, min(n-i, i)))) %p A372890 end: %p A372890 a:= n-> b(n$2)[2]: %p A372890 seq(a(n), n=0..33); # _Alois P. Heinz_, May 23 2024 %t A372890 Table[Total[Total[2^(#-1)]&/@IntegerPartitions[n]],{n,0,10}] %Y A372890 For Heinz number (not binary rank) we have A145519, row sums of A215366. %Y A372890 For Heinz number the strict version is A147655, row sums of A246867. %Y A372890 The strict version is A372888, row sums of A118462. %Y A372890 A005117 gives Heinz numbers of strict integer partitions. %Y A372890 A048675 gives binary rank of prime indices, distinct A087207. %Y A372890 A061395 gives greatest prime index, least A055396. %Y A372890 A118457 lists strict partitions in Mathematica order. %Y A372890 A277905 groups all positive integers by binary rank of prime indices. %Y A372890 Binary indices (A048793): %Y A372890 - length A000120, complement A023416 %Y A372890 - min A001511, opposite A000012 %Y A372890 - max A029837 or A070939, opposite A070940 %Y A372890 - sum A029931, product A096111 %Y A372890 - reverse A272020 %Y A372890 - complement A368494, sum A359400 %Y A372890 - opposite complement A371571, sum A359359 %Y A372890 - opposite A371572, sum A230877 %Y A372890 Cf. A000041, A005940, A018819, A019565, A066633, A225620, A344086, A365410. %K A372890 nonn %O A372890 0,3 %A A372890 _Gus Wiseman_, May 23 2024