This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372903 #8 May 17 2024 01:45:35 %S A372903 1,33,2295,5439,6699,7095,7497,7595,10241,11475,15345,19845,24651, %T A372903 25245,35845,37725,37791,49203,50463,51183,51471,60291,62073,64337, %U A372903 65569,66495,68313,78793,80223,81809,86031,98167,100659,103293,109395,115245,119067,119919,142137 %N A372903 Numbers k that divide the k-th little Schroeder number. %C A372903 Numbers k such that k | A001003(k). %H A372903 Amiram Eldar, <a href="/A372903/b372903.txt">Table of n, a(n) for n = 1..208</a> %e A372903 1 is a term since A001003(1) = 2 is divisible by 1. %e A372903 33 is a term since A001003(33) = 37836272668898230450209 = 33 * 1146553717239340316673 is divisible by 33. %t A372903 seq[kmax_] := Module[{sc0 = 1, sc1 = 1, sc2, s = {1}}, Do[sc2 = ((6*k-3)*sc1 - (k-2)*sc0)/(k+1); If[Divisible[sc2, k], AppendTo[s, k]]; sc0 = sc1; sc1 = sc2, {k, 2, kmax}]; s]; seq[10^5] %o A372903 (PARI) lista(kmax) = {my(sc0 = 1, sc1 = 1, sc2); print1(1, ", "); for(k = 2, kmax, sc2 = ((6*k-3)*sc1 - (k-2)*sc0)/(k+1); if(!(sc2 % k), print1(k, ", ")); sc0 = sc1; sc1 = sc2);} %Y A372903 Cf. A001003. %Y A372903 Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin). %K A372903 nonn %O A372903 1,2 %A A372903 _Amiram Eldar_, May 16 2024