This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372915 #9 Jun 08 2024 03:09:05 %S A372915 0,0,2,4,9,10,25,22,38,49,56,56,111,71,119,141,153,126,249,166,244, %T A372915 299,279,244,463,288,361,489,517,373,677,436,626,719,620,665,1078,604, %U A372915 811,936,1000,749,1444,842,1221,1384,1173,1016,1871,1261,1393,1597,1566,1259 %N A372915 a(n) is the number of distinct triangles with area n whose vertices are points of an n X n grid. %H A372915 Felix Huber, <a href="/A372915/b372915.txt">Table of n, a(n) for n=0..666</a> %H A372915 Felix Huber, <a href="/A372915/a372915.pdf">Illustration of the term a(4) = 9</a> %e A372915 See the linked illustration for the term a(4) = 9. %p A372915 A372915:=proc(n) %p A372915 local p,q,g,h,u,v,x,y,L,M; %p A372915 L:=[]; %p A372915 for g from 2 to n do %p A372915 h:=2*n/g; %p A372915 if type(h,integer) then %p A372915 for x to n do %p A372915 M:=[g,sqrt(x^2+h^2),sqrt((g-x)^2+h^2)]; %p A372915 M:=sort(M); %p A372915 if not member(M,L) then %p A372915 L:=[op(L),M]; %p A372915 fi; %p A372915 od; %p A372915 fi; %p A372915 od; %p A372915 for p to n do %p A372915 for q from 1 to p do %p A372915 g:=sqrt(p^2+q^2); %p A372915 h:=2*n/g; %p A372915 u:=h/g*q; %p A372915 v:=q+h/g*p; %p A372915 for x from max(1,ceil(p/q*(v-n)+u)) to min(n,floor(p/q*v+u)) do %p A372915 y:=q/p*(u-x)+v; %p A372915 if type(y,integer) and x <> p and y <> q then %p A372915 M:=[g,sqrt(x^2+(y-q)^2),sqrt((x-p)^2+y^2)]; %p A372915 M:=sort(M); %p A372915 if not member(M,L) then %p A372915 L:=[op(L),M]; %p A372915 fi; %p A372915 fi; %p A372915 od; %p A372915 od; %p A372915 od; %p A372915 return numelems(L); %p A372915 end proc; %p A372915 seq(A372915(n),n=0..53); %Y A372915 Cf. A045996, A088658, A303331, A320310, A320542, A320544, A334713, A372217, A372218. %K A372915 nonn %O A372915 0,3 %A A372915 _Felix Huber_, Jun 02 2024