1, 2, 1, 3, 2, 3, 1, 4, 2, 5, 1, 5, 2, 3, 3, 5, 2, 5, 1, 8, 2, 3, 1, 7, 3, 5, 2, 5, 2, 9, 1, 6, 2, 5, 3, 8, 2, 3, 3, 11, 2, 6, 1, 5, 5, 3, 1, 9, 2, 8, 3, 8, 2, 6, 3, 7, 2, 5, 1, 15, 2, 3, 3, 7, 5, 6, 1, 8, 2, 9, 1, 11, 2, 5, 5, 5, 2, 9, 1, 14, 3, 5, 1, 10, 5, 3
Offset: 1
See also the linked illustrations of the terms a(4) = 3, a(8) = 4, a(15) = 3.
n = 4 has the three divisors 1, 2, 4. Since 4 is not squarefree, r can have the values 1 or 2. For r = 1 = 1^2 + 0^2 there are two rectangles (2,2), (4,1). For r = 2 = 1^2 + 1^2 and n/r = 4/2 = 2 = w*h there is the rectangle (2*sqrt(2), 1*sqrt(2)). That's a total of a(4) = 3 distinct rectangles.
n = 8 has the four divisors 1, 2, 4, 8. Since 4 and 8 are not squarefree, r can have the values 1 or 2. For r = 1 = 1^2 + 0^2 there are two rectangles (4,2), (8,1). For r = 2 = 1^2 + 1^2 and n/r = 8/2 = 4 = w*h there are the rectangles (4*sqrt(2), 1*sqrt(2)) and (2*sqrt(2), 2*sqrt(2)). That's a total of a(8) = 4 distinct rectangles.
n = 15 has the four divisors 1, 3, 5, 15. They are all squarefree, but 3 and 15 cannot be written as a sum of two squares, r can only have the values 1 or 5. For r = 1 = 1^2 + 0^2 there are two rectangles (5,3), (15,1). For r = 5 = 2^2 + 1^2 and n/r = 15/5 = 3 = w*h there is the rectangles (3*sqrt(5), 1*sqrt(5)). That's a total of a(15) = 3 distinct rectangles.
Comments