This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372929 #21 May 22 2024 01:57:13 %S A372929 1,23,107,424,749,2461,2743,7232,9369,17227,15971,45368,30757,63089, %T A372929 80143,119296,88433,215487,137179,317576,293501,367333,292007,773824, %U A372929 483625,707411,777843,1163032,731669,1843289,953311,1937408,1708897,2033959,2054507,3972456 %N A372929 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^4. %H A372929 Seiichi Manyama, <a href="/A372929/b372929.txt">Table of n, a(n) for n = 1..10000</a> %H A372929 Peter Bala, <a href="/A368743/a368743.pdf">GCD sum theorems. Two Multivariable Cesaro Type Identities</a>. %F A372929 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^3. %F A372929 a(n) = Sum_{d|n} mu(n/d) * d^3 * sigma(d), where mu is the Moebius function A008683. %F A372929 From _Amiram Eldar_, May 21 2024: (Start) %F A372929 Multiplicative with a(p^e) = p^(3*e-3) * (p^3 * (p^(e+1)-1) - p^e + 1)/(p-1). %F A372929 Dirichlet g.f.: zeta(s-3)*zeta(s-4)/zeta(s). %F A372929 Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = zeta(2)/zeta(5) = 1.586353589... . (End) %t A372929 f[p_, e_] := p^(3*e-3) * (p^3 * (p^(e+1)-1) - p^e + 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, May 21 2024 *) %o A372929 (PARI) a(n) = sumdiv(n, d, moebius(n/d)*d^3*sigma(d)); %Y A372929 Cf. A343497, A368743, A372928, A372930. %Y A372929 Cf. A343498, A372926, A372931. %Y A372929 Cf. A000203, A008683. %Y A372929 Cf. A013661, A013663. %K A372929 nonn,mult %O A372929 1,2 %A A372929 _Seiichi Manyama_, May 17 2024