This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372940 #11 May 18 2024 02:01:09 %S A372940 1,2,10,70,410,416,464,560,610,692,976,1840,2512,2815,3712,4187,5888, %T A372940 6026,7192,10556,12064,14560,18368,32704,33580,36424,40016,41944, %U A372940 45400,51940,58115,60416,61544,62930,64288,66976,80320,87232,103247,110026,114802,118400 %N A372940 Numbers k that divide the k-th Franel number. %C A372940 Numbers k such that k | A000172(k). %H A372940 Amiram Eldar, <a href="/A372940/b372940.txt">Table of n, a(n) for n = 1..345</a> %F A372940 2 is a term since A000172(2) = 10 = 2 * 5 is divisible by 2. %F A372940 10 is a term since A000172(10) = 38165260 = 10 * 3816526 is divisible by 10. %t A372940 seq[kmax_] := Module[{f0 = 1, f1 = 2, f2, s = {1}}, Do[f2 = ((7*k^2 - 7*k + 2)*f1 + 8*(k-1)^2*f0)/k^2; If[Divisible[f2, k], AppendTo[s, k]]; f0 = f1; f1 = f2, {k, 2, kmax}]; s]; seq[5000] %o A372940 (PARI) lista(kmax) = {my(f0 = 1, f1 = 2, f2); print1("1, "); for(k = 2, kmax, f2 = ((7*k^2 - 7*k + 2)*f1 + 8*(k-1)^2*f0)/k^2; if(!(f2 % k), print1(k, ", ")); f0 = f1; f1 = f2);} %Y A372940 Cf. A000172. %Y A372940 Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin). %K A372940 nonn %O A372940 1,2 %A A372940 _Amiram Eldar_, May 17 2024