This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372941 #9 May 18 2024 01:50:10 %S A372941 1,2,4,14,28,112,133,176,224,368,388,448,616,704,784,896,1216,1568, %T A372941 1792,3563,4256,5144,6272,8624,8924,9856,11264,11776,13927,16702, %U A372941 23408,32936,38509,42238,43456,43652,43904,46424,67328,73784,76912,78848,81466,110614,118256 %N A372941 Numbers k that divide the k-th Domb number. %C A372941 Numbers k such that k | A002895(k). %H A372941 Amiram Eldar, <a href="/A372941/b372941.txt">Table of n, a(n) for n = 1..132</a> %e A372941 2 is a term since A002895(2) = 28 = 2 * 14 is divisible by 2. %e A372941 4 is a term since A002895(4) = 2716 = 4 * 679 is divisible by 4. %t A372941 seq[kmax_] := Module[{d0 = 1, d1 = 4, d2, s = {1}}, Do[d2 = ((20*k^3 - 30*k^2 + 18*k - 4)*d1 - 64*(k-1)^3*d0)/k^3; If[Divisible[d2, k], AppendTo[s, k]]; d0 = d1; d1 = d2, {k, 2, kmax}]; s]; seq[5000] %o A372941 (PARI) lista(kmax) = {my(d0 = 1, d1 = 4, d2); print1("1, "); for(k = 2, kmax, d2 = ((20*k^3 - 30*k^2 + 18*k - 4)*d1 - 64*(k-1)^3*d0)/k^3; if(!(d2 % k), print1(k, ", ")); d0 = d1; d1 = d2);} %Y A372941 Cf. A002895. %Y A372941 Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin). %K A372941 nonn %O A372941 1,2 %A A372941 _Amiram Eldar_, May 17 2024